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Comparing Different Methods for Multiple Testing in Reaction Time Data 
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Reaction times were simulated for examining the power of six methods for multiple testing, as a function 
of sample size and departures from normality. Power estimates were low for all methods for non-normal 
distributions. With normal distributions, even for small sample sizes, satisfactory power estimates were 
observed, especially for FDR-based procedures. 
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Introduction 

 
Scientific research often deals with the problem 
of performing many tests of significance. 
However, this practice results in an increase of 
the likelihood of committing one or more Type I 
errors, which grows as the number of tests 
increases (e.g., Keselman, Cribbie, & Holland, 
1999). In the most common approach, error rate 
is familywise controlled (Familywise Error Rate, 
FWER) by reducing the α  value as a direct 

function of the number of comparisons to be 
computed. In the classic Bonferroni method 

(1936), the threshold probability ( FWα , usually 

set at .05) is divided by the total number of 
comparisons. This approach to controlling errors 
in multiple-testing contexts ensures that the 
probability of committing   Type I error at least  
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once is α≤ . The intrinsic limit of multiple 

testing with FWER control is that such approach 
becomes more conservative as the number of 
tests rises: Indeed, a major criticism frequently 
levelled at multiple testing is their lack of power. 
 A different perspective to controlling 
Type I error when performing many tests of 
significance is represented by the False 
Discovery Rate (FDR). This statistical 
procedure, introduced by Benjamini and 
Hochberg (1995), can be implemented in all 
those experimental contexts in which the 
computation of a large number of comparisons is 
required. The FDR is focused on the proportion 

of errors committed when 0H  is rejected, which 

results in both keeping Type I error under 
control and in an increase of power. Further 
advantages characterizing FDR are represented 
by its easy and quick implementation (Thissen, 
Steinberg, & Kuang, 2002), and by its wide 
applicability, as proved by the fact that FDR can 
be adopted when multiple comparisons involve 
either independent or correlated test statistics 
(Benjamini & Yekutieli, 2001). 

A third possible way for dealing with 
multiple testing is represented by resampling-
based procedures (Westfall & Young, 1993). 
Following this approach, the values of observed 
variables are randomly re-assigned to the 
experimental groups, and then the test statistics 
are re-computed. Thus, the resampling-based p-
value is the proportion of resampled data sets 
yielding a statistic as extreme as the original 
statistic. 
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 In this article, a Monte Carlo study is 
illustrated aimed at comparing the performance 
of six different procedures for treating multiple 
testing. The analysis has been conducted in the 
context of multiple comparisons among means 
resulting from nonnormally-distributed and 
correlated variables. Specifically, the classic 
Bonferroni method, two single-step FDR 
methods, two resampling-based methods, and a 
combined resampling-based FDR procedure 
were examined. 

These methods were used for adjusting 
p-value and then comparing their power. 
Because in multiple comparison testing more 
than one definition of power and Type I error 
rate is available, three different definitions 
associated to these measures were considered. It 
should be noted that FDR-based methods do not 
control for FWER (e.g., Wilcox, 2003). 
However, it is important to remark that 
comparing power of methods that do not have 
similar control over Type I errors can provide 
critical information as to the choice of a 
particular test in light of the associated costs (in 
terms of Type I error) and benefits (in terms of 
power; e.g., Horn & Dunnett, 2004).  

Reaction time (RT) data were simulated 
for this research. The present study focused on 
this particular type of variable for two main 
reasons. First, RTs represent the dominant 
dependent measure in cognitive psychology 
(e.g., Van Zandt, 2002). Second, RTs possess 
critical features that make them hard to be 
analyzed with classical statistical procedures 
(Heathcote, 1996). 

In the most common experimental 
paradigms using RTs, participants are submitted 
to a series of stimuli that have to be responded to 
as fast as possible. Therefore, measurements can 
hardly be considered as independent from each 
other. In addition, it is well known that RTs are 
not distributed according to a normal function 
(e.g., Schwarz, 2001; Van Zandt, 2000). McGill 
(1963) and Hohle (1965) proposed as a 
descriptive model of RTs, a theoretical 
distribution obtained through the convolution of 
a normal distribution and an exponential 
distribution, subsequently known as ex-Gaussian 
(Burbeck & Luce, 1982). Although other 
descriptive models are available such as the ex-
Wald, the Weibull and the Gamma distributions 

(see, e.g., Schwarz, 2001; Van Zandt, 2000), to 
date the ex-Gaussian distribution is among the 
most representative models for describing RTs 
(Ratcliff, 1978; 1979; Ratcliff & Murdock, 
1976). In addition, it is worth noting that, using 
the ex-Gaussian model, the usefulness of 
decomposing the normal and exponential 
components has been consistently demonstrated 
(e.g., Heathcote, 1996; Heathcote, Popiel, & 
Mewhort, 1991). For example, the simple 
arithmetic mean cannot be considered a 
satisfactory statistic within this context, given 
the skewness characterizing RTs. By contrast, 
there is wide agreement that ex-Gaussian 
parameters are more appropriate for describing 
(and interpretating) RTs (Heathcote, 1996). In 
the present paper, the ex-Gaussian distribution 
was adopted as a plausible model for RT data. 
 An experimental setting with three 
stimuli requiring a response of some sort was 
simulated. Each stimulus was repeated three 
times. Multiple comparisons among the 
observed RT means, obtained in this 
hypothetical task were then performed. Both 
sample size and the magnitude of the RT 
exponential component, were manipulated. The 
estimated power of the six procedures was then 
compared. Before illustrating the methods and 
results of the Monte Carlo study, the basics of p-
value adjustment in the examined procedures 
will be outlined, and the features of the ex-
Gaussian distribution and analysis will be briefly 
summarized. 
 
p-Value Adjustment 
 Suppose there is interest in testing m  

hypotheses simultaneously. For each hypothesis 

iH , mi ,...,2,1= , m  test statistics and the 

relative p-values will be computed. It is possible 

to compute an adjusted p-value ip~  for each test. 

Thus, the decision to reject iH  at FWER = α  is 

obtained by merely checking whether α≤ip~ . 

According to Westfall and Young (1993, p. 11), 
the mathematical definition of an adjusted p-
value is as follows: 
 

   ii Hp :inf{~ α=  is rejected at FWER = }α  (1) 
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That is, ip~  is the smallest significance 

level for which one still rejects iH , given a 

particular simultaneous test procedure. Adjusted 
p-values for FDR controlling procedures are 
defined similarly (Yekutieli & Benjamini, 
1999): 
 

ii Hp :inf{~ α=  is rejected at FDR = }α    (2) 

 
In the present study, the following p-

value adjustment procedures were considered: 
Bonferroni adjustment (B), two single-step 
FDR-type adjustments, that is Benjamini-
Hochberg (BH; the basic FDR method) and 
Benjamini-Yekutieli (BY), and three 
resampling-based adjustments, that is the 
method described by Reiner, Yekutieli and 
Benjamini (2003; RYB) and two methods 
proposed by Ge, Dudoit and Speed (2003), 
called maxT and minP. Whereas B, minP, and 
maxT control FWER, BH, BY, and RYB control 
FDR.  
 
B adjustment 

This adjustment by Bonferroni (1936) 
consists of multiplying each observed 

probability, ip , by the number of comparisons 

that have been performed. In case the value 
resulting from this computation exceeds 1, then 
probability is set at 1: 
  

                          )1,min(~ mpp iiB =                     (3) 

 
BH adjustment 

This method has been introduced by 
Benjamini and Hochberg (1995) for independent 
and positive regression dependent test statistics. 

Let )()2()1( ... mppp ≤≤≤  be the observed 

probabilities arranged in increasing order, then: 
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BY adjustment 
This method was proposed by 

Benjamini and Yekutieli (2001) for controlling 
general dependency structures. Let 

)()2()1( ... mppp ≤≤≤  be the observed 

probabilities arranged in increasing order, then: 
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RYB adjustment  

This is a resampling-based FDR adjustment. 
In particular the method described by Reiner et 
al. (2003) was considered, which can be 
summarized as follows: First, the data are 
repeatedly resampled under complete null 

hypothesis (meaning that all iH  are true) and a 

vector of resampling-based p-values is computed 

for each iH . For the k-th hypothesis, with an 

observed test statistics kt , the estimated p-value 

is: 
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where mi ,...,1= , m  are the number of 

hypotheses, Nj ,...,1= , N  the number of 

resampling, and 
*

ijt  are the resampling-based 

test statistics. 
The adjusted p-values using the BH 

adjustment is obtained as follows: 
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Resampling maxT adjustment  

This algorithm, originally proposed by 
Westfall and Young (1993), has been further 
examined by Ge et al. (2003). The step-down 
maxT adjusted p-values are defined by: 
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           under complete null hypothesis)}         (8) 
 

where || lT is the random variable associated to 

the statistical test, and 

||...|||| )()2()1( mttt ≥≥≥ denote the ordered 

observed test statistics. 
 
Resampling minP adjustment 

This algorithm was also put forward by 
Westfall and Young (1993). However, the 
version considered in the present study is based 
on a modified adaptation (see Ge et al., 2003). 
The step-down minP adjusted p-values are 
defined by:  

/min{Pr(max~
)(

,...,,...,1
min kl

mklik
iP pPp ≤=

==
 

          under complete null hypothesis)}     (9) 
 

where lP  denotes the random variable for the 

unadjusted p-value of the l-th hypothesis and 

)()2()1( ... mppp ≤≤≤ denote the ordered 

observed p-values. 
 
Ex-Gaussian Distribution 
 The ex-Gaussian function is identified 
as a good theoretical approximation of RT 
distribution (e.g., Heathcote, 1996; Heathcote et 
al., 1991; Van Zandt, 2000) and its shape can be 
formally described as follows: 
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This density function depends on three 
parameters: µ  and σ , corresponding to mean 

and standard deviation of the Gaussian 
component of the distribution respectively, and 

τ , corresponding to the exponential component 

of the distribution. Ratcliff (1979) showed that 

mean ( µRT ) and standard deviation ( σRT ) of 

the ex-Gaussian can be rewritten as a function of 
these three parameters. In particular: 
 

                               τµµ +=RT                (12) 

 
and 
 

                           
22 τσσ +=RT             (13) 

 
Examples of ex-Gaussian density functions are 
depicted in Figure 1, where the influence of the 
exponential component on the shape of the 
distribution function is illustrated. The curves 
have µ  = 550 and σ  = 50 as fixed parameters, 

whereas the τ  value is varied. It is worth 

noticing that the exponential component 
determines an increase of the positive skew. 
 As briefly anticipated earlier, Heathcote 
(1996; Heathcote et al., 1991; Mewhort, Braun, 
& Heathcote, 1992) has proposed an RT analysis 
method based on the properties highlighted 
above. In particular, Heathcote (1996) has 
developed a statistical package, RTSYS, that 
allows researchers to easily obtain values for µ , 

σ , and τ  by means of RT decomposition. 

 Several arguments support the need of 
using an RT decomposition technique prior to 
statistical analysis. First, RT data can contain 
extreme values (i.e., outliers) that do not reflect 
the effects of the independent variables and can 
be problematic for interpreting the results. 
Solutions to the problem of outliers usually rely 
on trimming observations (e.g., Ratcliff, 1993; 
Van Selst & Jolicoeur, 1994; Wilcox, 2005). 
However, finding a general criterion for 
removing data is problematic because real data 
are almost inevitably rejected along with 
spurious data. Second, as discussed above, skew 
in RT distribution can cause serious problems of 
interpretation for descriptive statistics. For 
instance, a given independent variable may 
influence the mean and median differently by 
modifying the degree of skew. It should also be 
stressed that significantly skewed data violate 
the assumption underlying most parametric tests, 
that variability in data is normal. Whereas the 
common approach in research practice is to 
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ignore skew, several studies have shown that the 
magnitude of skew often contains information 
about the effect of experimental manipulations 
(Ratcliff & Murdock, 1976; Heathcote et al., 
1991; Campbell & Penner-Wilger, 2006). It 
follows that even if one circumvents the problem 
of violating the normality assumption of 
parametric tests by transforming RTs, the risk of 
losing information and missing potentially 
important effects is still present. 

In summary, through quantifying RT 
distribution shape, ex-Gaussian decomposition 
can reveal structure within RT data not revealed 
by conventional analyses. It has successfully 
been adopted in a variety of studies dealing with 
RTs in several research fields related to 
cognitive psychology (e.g., Andrews & 
Heathcote, 2001; Armstrong & Munoz, 2003; 
Balota & Spieler, 1999; Dell’Acqua, Job, & 
Grainger, 2001; Leth-Steensen, Elbaz, & 
Douglas, 2000; Madden, Gottlob, Denny, 
Turkington, Provenzale, Hawk, & Coleman, 
1999; Mewhort, & Johns, 2000; Penner-Wilger, 
Leth-Steensen, & LeFevre, 2002; Spieler, 
Balota, & Faust, 2000; West, Murphy, Armilio, 
Craik, & Stuss, 2002). 

Methodology 
 
Data Generation 
 Data were generated and analyzed by 
means of a custom-made program written in R 
(R Development Core Team, 2003). Random 
number generation was achieved by using the 
Mersenne-Twister method (Matsumoto & 
Nishimura, 1998). This generator guarantees far 
longer period and far higher order of 
equidistribution than any other implemented 
generators.  

RTs were generated through the 
application of the rnorm function concerning the 
normal component (with µ  and σ  as mean and 

standard deviation, respectively) and the rexp 
function concerning the exponential component 
(with τ  as parameter), as follows: 

 

       )/1,exp(),,( τσµ nrnrnormRT +=   (14) 

 

Clearly, with 0=τ , the exponential 

component is set to 0. As a result, the ex-
Gaussian function reduces to a normal 
distribution with mean µ  and standard 

 
Figure 1. Ex-Gaussian density functions with µ = 550, σ = 50 and { }300,200,100,0∈τ  
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deviation σ . Note that this very same values 

would be obtained after performing the RT 
decomposition algorithm (Heathcote, 1996) in 
any generated RT raw data set.  

In order to generate correlated data, the 
method described by Jöreskog and Sörbom 
(1996, pp. 189-190) was used. Such method is 
based on the adoption of a lower triangular 

matrix T  such that 'TT=Σ , where Σ  is the 
population correlation matrix. Application of 
such procedure ensures the generation of 
correlated ex-Gaussian distributions.  
 
Experimental Design 
 An experimental situation with three 
stimuli (e.g., pictures) requiring a speeded 
response of some sort in a given task (e.g., 
picture naming) was simulated. Each stimulus 
was repeated three times. Multiple comparisons 
were then performed among all the observed RT 
means. In such a context, differences may be 
expected for comparisons between different 
stimuli. Conversely, no differences should be 
expected in comparisons between repetitions of 
the same stimulus. Whereas in an empirical 
setting this latter type of comparisons may be 
relevant to test the consistency of a given 
stimulus (or participant), in the present study it 
was critical for evaluating Type I error. 

The parameters for the simulation were 
chosen after an extensive review and analysis of 
the studies employing the ex-Gaussian 
decomposition technique cited above. 
Specifically, RT means ranged from 446 
(Spieler et al., 2000) to 1199 milliseconds (Leth-
Steensen et al., 2000). Using the ex-Gaussian 
decomposition, the mean value of µ  was about 

522 milliseconds, ranging from 286 (Dell'Acqua 
et al., 2001) to 865 (Leth-Steensen et al., 2000). 

σ  varies between 32 (Spieler et al., 2000) and 

175 (Leth-Steensen et al., 2000), with mode 50. 
The estimated values of τ  ranged from 41 

(Spieler et al., 2000) to 414 (Leth-Steensen et 
al., 2000). Consequently, three distributions 
were considered (one for each of the three 

stimuli) with mean 1µ  = 595, 2µ = 550, and 3µ  

= 535, all of which had a standard deviation of 

σ  = 50, and four values of τ  : 0, 100, 200, and 

300. In addition, the correlation value across 
distributions was set to ρ  = .6, with the purpose 

of simulating a setting with a medium-to-high 
correlation level, and the correlation value 
within distributions was set to ρ  = 1. 

To summarize, the notation 

),,( τσµExG was used to indicate a generic ex-

Gaussian distribution with µ , σ , and τ  as 

parameters. Consequently, the resulting three 
distributions were defined as follows: 

 

),50,595(1 τExGD ≈  

),50,550(2 τExGD ≈  

),50,535(3 τExGD ≈  

where { }300,200,100,0∈τ . 

 
The manipulation of τ  was aimed to evaluate 

the performance of the six p-value adjustment 
methods as a function of departures from 
normality.  

For each of the three distributions 

( 1D , 2D  and 3D ) three repetitions were 

performed, thus producing nine RTs in total. A 
scheme representing the procedure adopted is 
depicted in Figure 2. The sample size was varied 
in four different sizes (n): 12, 20, 40, and 80. 
These particular values were chosen because 
they are representative of those generally 
adopted in empirical research (e.g., Andrews & 
Heathcote, 2001; Dell'Acqua et al., 2001). 

By combining the four chosen τ  values 

with the four different sample sizes, sixteen 
different scenarios were obtained. For each 
scenario, the sampling was replicated five 
thousand times. Therefore, the total number of 

generated samples was 80000500044 =×× . 

 
Pairwise Comparisons 
 For each sample, after computing mean 
RTs, all the possible paired comparisons were 
performed by means of paired samples t-tests, 

equals to 36
2

9
=((

)

*
++
,

-
. In order to determine 

whether the difference was statistically 
significant, the p-value adjustments described 
earlier were used: 
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1. B: following the procedure specified 
in (3). 
2. BH: following the procedure 
specified in (4). 
3. BY: following the procedure 
specified in (5). 
4. RYB: following Resampling FDR 
Adjustment definition described in (6) 
and (7); a modified version of the R 
program by A. Reiner available over 
the internet at 
http://www.math.tau.ac.il/~ybenja was 
used. For each of the 5000-generated 
raw-data sets, data were resampled 
1000 times. 
5. maxT: following definition (8). For 
each of the 5000-generated raw data 
sets, data were resampled 1000 times. 
6. minP: following definition (9). For 
each of the 5000-generated raw data 
sets, data were resampled 1000 times. 

 
For both maxT and minP, the R-package 

Multtest by Dudoit and Ge was used. This may 
be downloaded from the Bioconductor website 
http://www.bioconductor.org/. 

 
 
 
 

 
 
The tested hypothesis was the following:  

 

0:0 =− hkRTijRTH µµ  

 
where 
 

}3,2,1{,,, ∈khji  

and 
 

                          ),(),( khji ≠                   (15) 

 
This hypothesis is true when the 

comparison is made between two variables 
belonging to the same distribution, and false 
when the variables belong to different 
distributions. The Null Hypothesis status for the 
considered comparisons is shown in Table 1. 

The true values of the differences 

between means ( hkij µµθ −= ), are represented 

in Table 2. As a result, nine comparisons for 

each of the θ  values were considered. Note that 

when 0=θ , 0H is true, being false in all the 

other cases. 
 

 
 

Figure 2. Schematic summary of data generation.  

ijX with { }3,2,1, ∈ji , is the j-th variable obtained from the iD  distribution. 
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Empirical Evaluation of Power and Type I Error 
Rate 

Because the present study was aimed at 
evaluating the power of each adjustment 
procedure, defining power represents a critical 
issue. Crucially, in multiple testing situations, 
power is not univocally characterized. the present 

study, three types of power were considered:  

Any-pair power was the probability of correctly 
rejecting at least one hypothesis for each level of 

0θ >  (Ramsey, 1978; Westfall & Young, 1993, 

p. 205). Consequently, the number of times, for 

each level of 0θ > , in which 0H  was rejected  

 
at least once was computed. This value was then 
divided by the total number of replications (i.e., 
5000). In the experimental practice, the any-pair 
definition is generally chosen for dealing with 
exploratory scenarios, because of a higher 
discriminatory capability.

 
All-pair power was the probability of 

correctly rejecting all hypotheses for each level 

of 0>θ  (Ramsey, 1978; Westfall & Young, 

1993, p. 205). Consequently, the number of 

times, for each level of θ , in which all 0H  were 

rejected was computed. This value was then 
divided by the total number of replications (i.e., 

Table 1: Null Hypothesis status in the examined comparisons 

  µ11 µ12 µ13 µ21 µ22 µ23 µ31 µ32 

µ12  true                                  

µ13  true   true                            

µ21  false   false  false                    

µ22  false   false  false  true               

µ23  false   false  false  true  true          

µ31  false   false  false  false  false  false        

µ32  false   false  false  false  false  false  true   

µ33  false   false  false  false  false  false  true  true 

 

Table 2. True value of the differences between means 

Comparisons θ   

ikij µµ −  0 with }3,2,1{,, ∈kji  for kj ≠  

kj 32 µµ −  15 with }3,2,1{,, ∈kji  

kj 21 µµ −  45 with }3,2,1{,, ∈kji  

kj 31 µµ −  60 with }3,2,1{,, ∈kji  
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5000). In the experimental practice, the all-pair 
power definition is generally chosen when 
missing the rejection of even a single false 

0H has particularly dramatic consequences. 

Per-pair power was the rejection 
probability for a given pair of hypotheses, for 

each level of 0>θ  (Ramsey, 1978). 

Consequently, the number of rejected 0H  was 

counted and then divided by the total number of 

hypotheses for each level of 0>θ  (i.e., 

4500050009 =× ). In the experimental 

practice, the per-pair power definition is 
generally adopted in meta-analytic contexts 
(Westfall & Young, 1993), and can be 
interpreted as an intermediate solution between 
any-pair and all-pair definitions. 

When 0=θ , all 0H  are true. Hence, the 

number of times in which 0H were rejected was 

evaluated for estimating Type I error rate. Three 
types of Type I error rate were considered:  

FWER was the probability of rejecting 
at least one true null hypothesis. Consequently, 

the number of times in which 0H was rejected at 

least once was counted. This value was then 
divided by the total number of replications (i.e., 
5000). 

FDR was the expectation of the 
proportion of the rejected null hypotheses which 
are erroneously rejected. Consequently, the 

proportion of erroneously rejected 0H  was 

counted. This value was then divided by the total 
number of replications (i.e., 5000). 

Per-Comparison error rate (PCER) was 
the rejection probability for a given pair of true 
null hypotheses. Consequently, the number of 

rejected 0H was counted and then divided by 

the total number of hypotheses in which 0=θ  

(i.e., 4500050009 =× ). 

Because the computed values associated 
to the different power and Type I error 
definitions vary as a function of the proportion 
of true null hypotheses (cfr. Dudoit, Shaffer, & 
Boldrick, 2003), it is worth noting that, in the 
present context, this proportion was .25. 

 
 
 

Results 
For each of the sixteen considered scenarios, 
before estimating power, the mean number of 
significant tests for all the considered values of 

the θ  parameter was computed. It must be 

stressed once again that sampling was replicated 
five thousand times. 
 
Type I error rates 

 Type I error estimates are illustrated in 
Table 3. Given that the different methods control 
different kinds of Type I error, following Dudoit 
et al. (2003), FWER estimates are reported for 
B, maxT and minP, whereas FDR estimates are 
reported for BH, BY and RYB. In addition, 
PCER estimates are reported for unadjusted p-
values (rawp). Inspection of Table 3 shows that 
B always succeeded in keeping Type I error 
under .05. The performance of all the remaining 
methods was modulated by both sample size (n) 
and the magnitude of the exponential component 
(τ ). More specifically, all methods were 

weakened as τ increased, whereas increasing 

sample size resulted in a more efficient control. 
Crucially, however, when sample size was 
sufficiently large (n = 80), all the FDR-based 
methods (BH, BY, and RYB) were effective in 
controlling Type I error adequately even when 
the magnitude of the exponential component 

was highest ( 300=τ ). 

 
Any-Pair Power 

Figures 3 and 4 represent the power 
estimates obtained with n set at 12 and 80, 
respectively. The four graphs in each figure 
represent the functions obtained for each 
specific τ value (0, 100, 200, 300) with the six 

different methods. In abscissa the value of the θ  

parameter (i.e., the real difference between 
means) is represented. 

As a general trend, an expected increase 

of significant results as both θ  and n increased 

can be observed. However, it is worth remarking 
that the number of significant tests dramatically 
decreased as τ  increased, thus showing that 

departures from normality directly result in a 
loss of power. 

For 0>τ , RYB showed the best 

performance when sample size was small (n = 
12). As sample size increased, however, RYB 
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performance was equivalent to BH performance 
in all conditions. When sample size was 
sufficiently large (n = 80), all methods seemed 
to achieve a good performance in terms of 
power even for moderate values of the 

exponential component ( 100=τ ). Finally, for 

100>τ , RYB and BH showed the best 

performance, followed by maxT and minP 
(showing overlapping functions), and BY and B 
(showing overlapping functions).  

Per-Pair Power. Figures 7 and 8 
illustrate the power estimates for Per-pair 
definition. This way of defining power results in 
estimated values that occupy an intermediate 
level in between Any-pair and All-pair 
definitions. The results showed similar patterns, 
whereby power was influenced by both sample 
size and the magnitude of the exponential 
component. In more detail, for n = 12 none of 
the methods achieved reasonable power levels. 
Moreover, for n = 80, the methods showed 
acceptable power levels only for  . In good 
agreement with the results emerged for the 
previous power definitions, RYB and BH 
resulted the best adjustment methods, followed 
by maxT, minP and BY, and B. 

In general, the results seem to suggest 
that for small sample sizes (e.g., n = 12, Figures 
3, 5 and 7) the power of all methods tended to 
lower as the value of τ  increases, meaning that 

the likelihood of committing a Type II error 
tends to rise as the distribution progressively 
departs from normality. The performance of 
RYB and BH always proved the best. Also, a 
general order relationship emerged, for every 
power definition, so that 
 

  BBYPTBHRYB ≅≥≅≥≅ minmax   (16) 

 

where YX ≅ denotes that X is approximately 
equivalent to Y, and ≥  denotes that X is 
equivalent or more powerful than Y. 

 For n = 80 (Figures 4, 6 and 8), 
all methods achieved acceptable power estimates 

even when 100=τ , provided that 15>θ . This 

seems to suggest that, with a large sample size, 
departures from normality do not strongly affect 

power. When 200=τ , neither RYB nor BH 

revealed a fully satisfactory performance even 

for 45>θ . These two methods tended to 

produce an equivalent performance in all the 
different scenarios. The order relationship 
emerged in the situations with lower sample 
sizes was confirmed, with RYB and BH being 
the most powerful methods, and B the least. 
 

Conclusion 
 
The present article was aimed at comparing the 
power of six different p-value adjustment 
procedures for treating multiple testing. In 
particular, RTs, which are the main dependent 
variable in many experimental contexts related 
to cognitive psychology (Van Zandt, 2002), 
were considered. Because it is well known that 
RTs are not distributed normally, the six p-value 
adjustment procedures were evaluated by 
manipulating the parameters related to the Ex-
Gaussian distribution. This distribution was 
chosen because it is one of the most prominent 
descriptive models for RTs in the literature (Van 
Zandt, 2000). In order to maintain a close 
reference with empirical research, the values of 
the different parameters were chosen based on a 
series of studies that have employed an RT 
decomposition technique. This allowed for the 
examination of the effects of departures from 
normality on the power estimate associated to 
each different p-value adjustment procedure. In 
addition, sample size was manipulated, whose 
values were selected following the same studies 
that used the RT decomposition technique. 
Because sample size is often quite small, the 
present study tested whether this factor played a 
major role in modulating the shape of the power 
function. 
 As a general comment, two main results 
emerged in the present investigation. First, the 
power of the different adjustment procedures 
was substantially influenced by both sample size 
and the shape of the distribution. Second, the 
adjustment procedures included in the present 
study can be ordered in a constant relationship. 
In particular, RYB always resulted the most 
powerful method, although closely followed by 
BH, whereas B, as expected, appeared very 
conservative in all the different scenarios. The 
difference between the most powerful methods 
(i.e., RYB and BH) and the remaining 
adjustment procedures was more pronounced for 

15=θ .   This result  is   important,  because the  
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Table 3. Type I error estimates as a function of sample size (n) and departures from normality (τ ). 

FWER estimates are reported for B, maxT and minP, FDR estimates are reported for BH, BY and 
RYB, and PCER estimates are reported for unadjusted p-values (rawp). 

  
 

    PCER FWER FDR 

n τ rawp B maxT minP BH BY RYB 

12 0 .048 .011 .035 .033 .012 .004 .012 

  100 .062 .026 .068 .051 .054 .025 .060 

  200 .069 .036 .100 .073 .142 .105 .200 

  300 .070 .045 .112 .081 .255 .193 .327 

20 0 .049 .011 .038 .038 .012 .003 .012 

  100 .056 .029 .067 .061 .031 .017 .032 

  200 .065 .045 .099 .083 .112 .096 .138 

  300 .067 .047 .099 .083 .216 .206 .248 

40 0 .048 .010 .043 .044 .012 .003 .012 

  100 .055 .026 .060 .056 .016 .006 .016 

  200 .057 .033 .073 .065 .046 .037 .051 

  300 .060 .037 .072 .063 .106 .094 .108 

80 0 .050 .010 .042 .042 .013 .003 .013 

  100 .052 .020 .054 .052 .013 .004 .013 

  200 .053 .027 .060 .058 .023 .012 .023 

  300 .054 .025 .056 .054 .048 .029 .050 
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Figure 3. Any-pair power estimates for the different p-value adjustment methods as a function of the 

true difference between means (θ) for n = 12. Each graph refers to a different τ value (0 to 300, from 
left to right). B = Bonferroni method (FWER); BH = Benjamini-Hochberg (FDR); BY = Benjamini-
Yekutieli (FDR); RYB = Reiner-Yekutieli-Benjamini (resampling-based FDR); minP and maxT 
(resampling). The horizontal line refers to .05. 
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Figure 4.  Any-pair power estimates for the different p-value adjustment methods as a function of the 

true difference between means (θ) for n = 80. Each graph refers to a different τ value (0 to 300, from 
left to right). Conventions as in Figure 3. 
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Figure 5. All-pair power estimates for the different p-value adjustment methods as a function of the 

true difference between means (θ) for n = 12. Each graph refers to a different τ value (0 to 300, from 
left to right). Conventions as in Figure 3. 
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Figure 6 All-pair power estimates for the different p-value adjustment methods as a function of the 

true difference between means (θ) for n = 80. Each graph refers to a different τ value (0 to 300, from 
left to right). Conventions as in Figure 3. 
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Figure 7. Per-pair power estimates for the different p-value adjustment methods as a function of the 

true difference between means (θ) for n = 12. Each graph refers to a different τ value (0 to 300, from 
left to right). Conventions as in Figure 3. 
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phenomena investigated in cognitive psychology 
and mental cronometry are often inferred on the 
grounds of mean differences in similar orders of 
magnitude. Relevant examples are offered by the 
Simon effect (see Lu & Proctor, 1995, for a 
review), the inhibition of return effect (see 
Klein, 2000, for a review), and the semantic 
priming effect (see Neely, 1991, for a review). 

In more detail, several observations can 
be made related to the different controlling 
methods. Within the class of FWER controlling 
methods, as illustrated in Table 3, minP and 
maxT showed a good Type I error control only 

when τ  =  0. For τ > 0, Type I error was not 
controlled anymore, although it can be observed 
that performance in this regard increased as n 
increased. On the other side, minP and maxT 
showed a clearly higher performance in terms of  

 

power, for small sample sizes, provided that τ ≤ 
100 (see Figures 3, 5, and 7). With large sample 

sizes and τ = 0, particularly when θ ≥ 45, minP, 
maxT and B showed overlapping power 
functions (see Figures 4, 6, and 8). In light of 
these    arguments,   minP  and   maxT  may   be 
preferred in the former scenario, whereas B is 
certainly to be preferred in the latter scenario. 
Notably, these results hold for all the different 
power types. Within the class of FDR 
controlling methods, Table 3 inspection 
highlights that all methods showed a good Type 

I error control when τ = 0. Surprisingly, some 
sort of linear relation seems to characterise Type 

I error control as a function of n and τ. In 
particular, when n = 20, all methods controlled 

Type I error for τ ≤ 100. When n = 40, Type I 

 
FIGURE 8 Per-pair power estimates for the different p-value adjustment methods as a function of the 

true difference between means (θ) for n = 80. Each graph refers to a different τ value (0 to 300, from 
left to right). Conventions as in Figure 3. 
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error control was extended to τ = 200, and when 
n = 80, a good Type I error control was observed 

even for τ = 300. In terms of power, BH and 
RYB consistently showed a better performance 
than BY, across all conditions and power types 

(see Figures 3-8). Only for n = 12 and τ≥ 100, 
RYB behaved slightly better than BH, 
independently of power type. In all the other 
conditions, the BH method is recommended, 
because of its quick and easy implementation 
(Thissen et al., 2002). 
 When comparing methods controlling a 
different kind of Type I error, several 

observations can be made. First, with τ = 0, B 
should be preferred over FDR-based methods 

when θ ≥ 45 and n = 80. In fact, given that they 
show overlapping power estimates, it may seem 
more reasonable to chose the method providing 
the strongest Type I error control. By contrast, 
when BH and RYB show a clear power 

advantage over B (e.g., for n = 12 and τ = 0), it 
may be more appropriate choosing either of 
these FDR-based control methods. 

In general, the RT exponential 
component produced a conspicuous loss of 
power, especially when sample size was small. 

For 300=τ , no method among those included 

in the present study showed power estimates 
higher than .4, even when the real distance 
among means was 60 and n = 80. Consequently, 
the results suggest that performing multiple 
comparisons with RT data is less than ideal 
when the data distribution is characterised by a 
strong exponential component. In light of the 
good performance with distributions in which 

0=τ , operating an RT decomposition 

technique such as put forward by Heathcote 
(1996) is strongly recommended. In fact, after 
performing the RT decomposition, the different 
adjustment methods appeared adequately 
powerful even with small sample sizes.  
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