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Abstract In many psychological inventories (i.e., personnel selection surveys and diagnos-
tic tests) the collected samples often include fraudulent records. This confronts the researcher
with the crucial problem of biases yielded by the usage of standard statistical models. In this
paper we applied a recent probabilistic perturbation procedure, called sample generation by
replacement (SGR)—(Lombardi and Pastore, Multivar. Behav. Res 47:519–546, 2012), to
study the sensitivity of Cronbach’s alpha index to fake perturbations in dichotomous and
ordered data, respectively. We used SGR to perform two distinct SGR simulation studies
involving two sample size conditions, three item set sizes, and twenty levels of faking per-
turbations. Moreover, in the second SGR simulation study we also evaluated an additional
factor, type of faking model, to study sample reliability under different modulations of graded
faking (uniform faking, average faking, slight faking, and extreme faking). To simulate these
more complex faking models we proposed a novel extension of the SGR perturbation proce-
dure based on a discrete version of the generalized beta density distribution. We also applied
the new procedure to real behavioral data on emotional instability.

Keywords Sample generation by replacement · Cronbach’s alpha · Faking good ·
Monte Carlo

1 Introduction

In many self-report questionnaires the need to analyze empirical data raises the major prob-
lem of possible fake observations in the data. Fake data come up from different causes. For
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example, an individual may deliberately attempt to manipulate or distort responses to person-
ality inventories and attitude tests to create positive impressions (e.g., Furnham 1986; McFar-
land and Ryan 2000; Paulhus 1991; Zickar and Robie 1999) and match the so called ideal
candidate profile (Paulhus 1991). In other circumstances, individuals may tend to malinger
responses on a symptom checklist to simulate grossly exaggerated physical or psychological
symptoms in order to reach specific goals such as, for example, obtaining financial compen-
sation, avoiding being charged with a crime, avoiding military duty, or obtaining drugs (e.g.,
Hall and Hall 2007; Mittenberg et al. 2002).

Many self-report measures of attitudes, beliefs, personality, and pathology include items
that can be easily manipulated as respondents may know what the correct, socially desir-
able, or convenient answer is even if that answer does not match their own true, but hidden
intentions. This problem is common in areas like psychology (Hopwood et al. 2008), orga-
nizational and social science (Van der Geest and Sarkodie 1988), forensic medicine (Gray
et al. 2003), and scientific frauds (Marshall 2000).

In general, self-report measures must confront the researcher with a crucial question (see
Lombardi and Pastore 2012): If data included fake data observations, would the answer to the
research question be different from what it actually is? We call this general question the fake
effect question (FEQ). A case of particular empirical interest in the analysis of behavioral data
is the situation in which a researcher needs to estimate the reliability of composite test scores
in possible fake data samples. In this context the FEQ can be rewritten as: If data contained
fake self-report measures, what would the true reliability test score be? And, in particular,
how can we reconstruct the true reliability score from the observed reliability score computed
on the fake-corrupted data? (reconstruction problem question, RPQ). Of course, FEQ and
RPQ are strictly related queries. In this paper we propose a rational/statistical approach in
an attempt to answer these important questions.

The reliability measure of a multi-item composite score is one of the most relevant con-
cepts in classical testing theory (Allen and Yen 1979; Nunnally and Bernstein 1994). It is
defined as the product–moment correlation between the composite score and the scores on
a test parallel to it (Novick 1966; Novick and Lewis 1967; Lord and Novick 1968). The
reliability of a test score is higher if the parallel test forms correlate higher. However, since in
practical situations the administration of two parallel versions of a test may be unattainable,
many alternatives have been proposed (e.g., Guttman 1945; Cronbach 1951; Revelle 1979;
Bentler and Woodward 1980; McDonald 1985) that use the data available from a single
test administration to compute reliability. In particular, when the items in the composite are
assumed to be essentially τ -equivalent (Lord and Novick 1968), many of these coefficients
reduce all to the same psychometric construct and the corresponding sample versions are
known to be equivalent and consistent estimates of reliability (e.g., Sijtsma 2009; Yuan and
Bentler 2002; Zinbarg et al. 2005). Therefore, the essentially τ -equivalent condition repre-
sents an ideal framework to study and evaluate the pure impact of fake responses on sample
reliability. In general, we would expect that the sample reliability should approach its maxi-
mum with high correlated items and uncorrupted data, but also degrade substantially under
massive fake data perturbation.

There is now a vast literature about reliability that covers many different aspects, theo-
retical and applicative ones. For example, MC simulations and theoretical studies have been
conducted to evaluate the robustness of reliability measures under violation of symmetry
and presence of outliers (e.g., Yuan and Bentler 2002; Maydeu-Olivares et al. 2007; Li Gwet
2008; Liu et al. 2010), as well as the impact of sample size, number of response categories,
and number of items (e.g., Lissitz and Green 1975; Cortina 1993; Weng 2004; Duhachek et al.
2005). Moreover, the issue of faking data in multivariate data analysis has been investigated
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using ad hoc empirical paradigms such as ad lib faking or coached faking to collect data and
simulate fake reports (Zickar et al. 2004; Zickar and Robie 1999). In particular, in recent years
some authors have proposed rational methods for assessing fake data in social desirability
contexts or faking-motivating situations by using factor analytic approaches (Ferrando 2005;
Ferrando and Anguiano-Carrasco 2009, 2011) as well as factor mixture models (Leite and
Cooper 2010).

Here we take a different approach, called sample generation by replacement (SGR; Lom-
bardi and Pastore 2012), to analyze possible fake data. SGR is defined by a two-stage sampling
procedure based on two distinct and well-separated generative models: the model representing
the process that generates the data prior to any fake perturbation and the model representing
the faking process to perturb the data. Therefore, the overall generative problem is split into
two conceptually independent and possibly simpler components (divide et impera approach).
This makes SGR different from the approaches described earlier, which, instead, try to model
the fake problem directly in the original statistical model by using sophisticated or complex
sampling procedures (e.g.,ad lib faking and coached faking) to collect data and simulate fake
reports. In general, SGR is more related in spirit to uncertainty analysis (Morgan et al. 1990)
and careless responding analysis (Woods 2006), which are characterized by an attempt to
directly quantify hypothetical uncertainty of general statistics computed on the data.

In this contribution, we examined, in two distinct SGR simulation studies, the sensitivity
(under the τ -equivalent assumption) of Cronbach’s alpha, to fake perturbations in dichoto-
mous and ordered data, respectively. Each of the two SGR simulation studies involved two
sample size conditions, three item set sizes, and twenty levels of faking perturbations. More-
over, in the second SGR simulation study we also added an additional factor, type of faking
model, to evaluate the sensitivity of the coefficient alpha under different modulations of
graded faking. In order to simulate these more complex faking models we introduced a novel
extension of the SGR resampling distribution based on a discrete version of the generalized
beta density distribution.

The remainder of the paper is organized as follows: The first section starts with a brief
recapitulation of the main components of the SGR approach as originally introduced by
Lombardi and Pastore (2012). Next, it continues by illustrating the problem of representing
reliability in SGR. Finally, it ends by introducing the new models of faking. The second section
presents the two simulation studies and reports results about the evaluation of the sample
coefficient alpha under fake data perturbations. The third section illustrates our method
with an application to real data about emotional instability. In this application SGR is used
to reconstruct approximate 95 % confidence intervals (CIs) for true reliability coefficient
values (see RPQ). Finally, the fourth and last section presents conclusions and some relevant
comments about limitations, potential new applications and extensions of the SGR approach.

2 The SGR approach

2.1 The fake-data representation problem in general

We think of two distinct data constructs: the original data set and the fake data set. The
original data set contains hidden sensitive responses and, therefore, is not a directly observable
object. By contrast, the fake data set contains observable self-report responses. In particular,
we assume that an observable self-report response corresponds to an original response after
being corrupted by some faking process. We now provide a more formal description of these
important data constructs.
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The original data set is represented by an I × J array D, with row di (i = 1, . . . , I )
containing the hidden response profile of the i th individual to the J items. We assume
that entry di j of D (i = 1, . . . , I ; j = 1, . . . , J ) takes values on a small ordinal range

V Q
q = {q, q + 1, . . . , q + t = Q} with q ∈ N ∪ {0} and t ∈ N. The hidden response pattern

di is a multidimensional ordinal random variable with probability distribution p(di |θM ),
where θM indicates the vector of parameters of the probabilistic model of the original data.
Moreover, we assume that the original response patterns are independent and identically
distributed (i.i.d.) observations and consequently

p(D|θM ) =
I∏

i=1

p(di |θM ). (1)

The model defined in Eq. (1) is called the true original data model and represents the true
data generation process. In the multivariate latent variable framework a common approach
for modeling ordinal variables according to Eq. (1) is the underlying variable approach
(Muthén 1984; Jöreskog and Sörbom 1996a). This approach assumes that the observed ordinal
variables are treated as metric through assumed underlying normal variables. For example,
under the simplified essentially τ -equivalent condition, the vector of parameters θM represents
the true population parameters of a single factorial model with equal loadings for the J items.

The fake data set is represented by an I × J array F containing the observed subjects’
responses. Likewise for the entries of D, also the entries of F take values on the same discrete
set V Q

q . We assume that the fake array F can be constructed by manipulating each element
di j in D according to a replacement probability distribution. In particular, let fi j be the
element of F denoting the observed response of subject i to item j . The observed response
fi j is a discrete random value from the conditional replacement probability distribution
p( fi j |di j , θF ) where θF indicates the parameter vector for the replacement model. In the
conditional replacement probability distribution we assume that each observed response fi j

only depends on the corresponding original observation di j and the model parameter θF .
Therefore, the fake data array is drawn from the joint probability distribution

p(F|D, θF ) =
I∏

i=1

J∏

j=1

p( fi j |di j , θF ) (2)

The model defined in Eq. (2) is called the faking model of the data and represents the faking
generation process.

It is important to note that the faking model integrates together two different kinds of
information: (a) the observed data D representing variables’ features and relations generated
according to Eq. (1) (b) the model parameter, θF , which characterizes some relevant prop-
erties of the faking model. In general, θF represents hypothetical a priori knowledge about
the distribution of faking (e.g., the chance of observing a fake observation in the data) or
empirically based knowledge about the process of faking (e.g., the direction of faking—fake
good vs fake bad—). In sum, SGR is characterized by a two-stage sampling procedure based
on two distinct generative models: the model defining the process that generates the data
prior to any fake perturbation and the model representing the faking process to perturb the
data. By repeatedly sampling data from Eqs. (1–2) we can generate the so called fake data
sample (FDS). We can then study the distribution of some relevant statistics computed on
this FDS.

In the following two sections we introduce the original data model and the faking models
that we used for representing the sampling processes in this study.
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Cronbach’s alpha and fake data perturbation 1195

2.2 Representing the alpha index in SGR

We can easily reformulate the general definitions of the SGR approach to study the effect of
fake data perturbation on the reliability of composite scores under the essentially τ -equivalent
condition. Note that in this simplified condition many important reliability coefficients such
as, for example, the β index (Revelle 1979), the ω index (McDonald 1985), the λ3 index
(Guttman 1945), and the glb index (Bentler and Woodward 1980) reduce all to the coefficient
alpha (Cronbach 1951)

α = J

J − 1

⎛

⎝1 − tr(�)/
∑

j j ′
σ j j ′

⎞

⎠ ,

and the corresponding sample coefficient

α̂ = J

J − 1

⎛

⎝1 − tr(S)/
∑

j j ′
s j j ′

⎞

⎠

is known to be a consistent estimate of reliability (e.g., Sijtsma 2009; Yuan and Bentler 2002;
Zinbarg et al. 2005). In the above equations S and � denote the sample covariance matrix
and its population counterpart, respectively. In this paper we will study the performance of
the sample coefficient alpha under different fake perturbation scenarios.

The τ -equivalent condition reveals also a natural way to represent the true original data
model in the SGR framework. We assume that the original data D has been generated by a
single factor with unit variance and J equal factor loadings. More precisely, the underlying
normal data set representing D is a random sample from the statistical population determined
by the true population parameters θM of the single factorial model and D represents its
discretization. In particular, since all the J item loadings are equal, λ1 = λ2 = . . . = λJ = λ,
then in the true original data model the population covariance of any two items, j and j ′,
boils down to σ j j ′ = λ2.

Finally, it is clear that many empirical contexts may require different and more complex
true original data model assumptions (e.g., multidimensional factor, unequal general factor
loadings). However, in this first study we wanted to understand the impact of fake data under
the simplest and purest representation of sample reliability first.

2.3 Representing models of faking in SGR

The previous section described a simple and elegant way to characterize the true original data
model in the SGR framework. In this section, we present a novel family of faking models that
extends the uniform support fake–good distribution originally introduced in Lombardi and
Pastore (2012). The new proposal shows two relevant features. First, it can represent faking
models for dichotomous data as well as ordinal rating data. Second, unlike the uniform support
fake–good distribution, it can model both symmetric and asymmetric faking good processes.
This latter property is particularly important for mimicking different modulations of graded
faking such as, for example, uninformative/neutral faking, slight faking, and extreme faking.

2.3.1 The uniform support fake–good distribution

Lombardi and Pastore (2012) used a simple parametrized distribution to model the faking
good scenario (Paulhus 1984; McFarland and Ryan 2000). In general, faking good can be
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conceptualized as an individual’s deliberate attempt to manipulate or distort responses to
create a positive impression (Paulhus 1984; Zickar and Robie 1999; McFarland and Ryan
2000). Notice that, the faking good (as well as the faking bad) scenario always entails a
conditional replacement model in which the conditioning is a function of response polarity.
This model represents a perturbation context in which responses are exclusively subject to
positive feigning: fi j ≥ di j (i = 1, . . . , I ; j = 1, . . . , J ). In particular, the replacement
probability distribution is defined as follows

p( fi j = k|di j = h, θF ) =

⎧
⎪⎪⎨

⎪⎪⎩

1, h = k = Q
π

Q−h , q ≤ h < k ≤ Q
1 − π, q ≤ h = k < Q
0, q ≤ k < h ≤ Q

(3)

The uniform support fake–good distribution has only one parameter, π , denoting the over-
all probability of replacement in the model. Eq. (3) defines the conditional probability of
replacing an original observed value h in entry (i, j) of D with the new value k. Note that
this model does not allow to substitute the original observed value with lower ones. More-
over, this simple replacement model is characterized by a uniform probabilistic kernel. More
precisely, in the faking good model all the values k > h are assumed to be equally likely
in the process of replacement. In sum, the model represents a purely random, but polarized
malingering process: PRPP (see Lombardi and Pastore 2012, for additional details about the
PRPP assumption).

However, some empirical contexts may require different model assumptions as well as
different fake distribution conditions that cannot be captured by this simple faking model. In
particular, several evidences have shown that individuals usually differ in the extent to which
they fake (Zickar and Robie 1999; Zickar et al. 2004). For example, depending on the context,
some individuals may distort their responses at a level that suggests extreme deception,
whereas in other circumstances they can barely exaggerate their personality characteristics
(Rosse et al. 1998). In general, the magnitude of faking differs both among individuals and
sensitive contexts. In sum we can recognize at least two different forms of asymmetric faking:
slight faking and extreme faking. Thus, it seems worthwhile to generalize the SGR framework
to investigate also these relevant typologies of faking.

2.3.2 Generalized beta distributions

In this paper we propose a novel characterization of the conditional replacement distribution
that extends the uniform support fake–good model to more complex asymmetric faking
scenarios. Because our new proposal is based on a discrete version of the generalized beta
density, in what follows we present some relevant properties of this important distribution
function before introducing the new faking models.

Generalized beta distribution. This distribution extends the classical beta distribution
to continuous random variables beyond the normalized range [0, 1] (Whitby 1971). This
distribution is defined as follows

G(x; a, b, γ, δ) = 1

B(γ, δ)(b − a)γ+δ−1 (x − a)γ−1(b − x)δ−1, (4)

where B(γ, δ) is the beta function. The parameters a ∈ R and b ∈ R (with a < b) are the left
and right end points respectively, and γ > 0 and δ > 0 are the governing shape parameters
for a and b respectively. For all the values of the r.v. X that fall outside the interval [a, b], G
simply takes value 0. The generalized beta distribution reduces to the beta distribution when
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Fig. 1 Four examples for the generalized beta distribution G with a continuous variable with bounds a = 1
and b = 7 together with the corresponding pmf of its discrete counterpart DG (continuous segments with
filled circles) for a 7-point discrete r.v. The graphical representation also shows a discrete version of the
generalized beta distribution (dashed segments with unfilled circles) which is not based on the correction
terms implemented in Eq. (6)

a = 0 and b = 1. Figure 1 shows four examples of generalized beta distributions. We now
describe a useful way to derive a discrete representation for G.

Generalized beta distribution for discrete variables. Let X be a discrete random variable
with range

RX = {a, a + 1, a + 2, . . . , a + t − 1, a + t = b}
and where a ∈ N ∪ {0} and t ∈ N. We propose the following generalized discrete beta
distribution for the r.v. X

DG(x; a, b, γ, δ) =
{

G∗(x;a,b,γ,δ)∑
x ′∈RX

G∗(x ′;a,b,γ,δ)
, x ∈ RX

0, x �∈ RX

(5)

where G∗ is a modified version of the generalized beta distribution G defined as

G∗(x; a, b, γ, δ) = 1

B(γ, δ)(b − a + 2)γ+δ−1 (x − a + 1)γ−1(b − x + 1)δ−1, (6)

Note that the denominator of Eq. (5) acts as a normalizing factor for the mass probability
distribution. Moreover, in G∗ we also added two positive constants [“2” in b − a(+2);
and “1” in x − a(+1) and b − x(+1)] acting as correction terms to cut the tails of the
generalized beta distribution. Figure 1 also shows a comparison between the pmf of DG and
the corresponding pmf obtained by not implementing the correction terms in the generalized
discrete beta distribution. This modification of G plays a key role in modeling the new
conditional replacement distribution.

123



1198 M. Pastore, L. Lombardi

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

gamma=1,delta=1

k

R
ep

la
ce

m
en

t p
ro

ba
bi

lit
y

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

gamma=3,delta=3

k

R
ep

la
ce

m
en

t p
ro

ba
bi

lit
y

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

gamma=1.5,delta=4

k

R
ep

la
ce

m
en

t p
ro

ba
bi

lit
y

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

gamma=8,delta=2.5

k

R
ep

la
ce

m
en

t p
ro

ba
bi

lit
y

Fig. 2 Four examples of replacement distributions (continuous segments with filled circles) for a 7-point
discrete r.v. with original value h = 3 and 1 − π = 0.6. The graphical representation also shows the effect of
not considering the correction terms in the implementation of the replacement distribution (dashed segments
with unfilled circles). Note that, without the correction terms, smooth transitions in the moderate (resp. extreme)
positive shift are not guaranteed in the replacement distribution (bottom panels)

2.3.3 The new replacement distribution.

We used the distribution defined in Eq. (5) as a basis for modeling faking good scenarios
in ordinal rating items with values in V Q

q . More precisely, the new conditional replacement
distribution can be described according to the following equation

p( fi j = k|di j = h, θF ) =

⎧
⎪⎪⎨

⎪⎪⎩

1, h = k = Q
π DG(k; h + 1, Q, γ, δ), q ≤ h < k ≤ Q
1 − π, q ≤ k = h < Q
0, q ≤ k < h ≤ Q

(7)

with θF and DG being the parameter vector θF = (γ, δ, π) and the generalized beta distrib-
ution for discrete variables (Eq. 5) with bounds a = h + 1 and b = Q, respectively. Finally,
the parameter π denotes the overall probability of replacement and acts as a weight to rescale
DG. Four examples of replacements distributions are shown in Fig. 2.

This new faking model can easily represent both symmetric (Fig. 2, top panels) and
asymmetric replacement kernels (Fig. 2, bottom panels). In particular, if γ = δ = 1, the
model reduces to the uniform support fake–good distribution [see Eq. (3) and Fig. 2 top-left
panel]. By contrast, if 1 ≤ γ < δ (resp. 1 ≤ δ < γ ), the model mimics asymmetric faking
configurations corresponding to moderate positive shifts (resp. exaggerated positive shifts)
in the value of the original response (Fig. 2, bottom panels). A relevant case is when π = 0.
For this special condition the fake data matrix F reduces to the original data matrix D [see
Eq. (7)]. Finally, if γ = δ = 1 and a = 0, b = 1, then Eq. (7) boils down to a simple faking

123



Cronbach’s alpha and fake data perturbation 1199

good model for dichotomous items (V1
0 = {0, 1}). In particular, Eq. (7) reduces to

p( fi j = k|di j = h, θF ) =

⎧
⎪⎪⎨

⎪⎪⎩

1, h = 1, k = 1
π, h = 0, k = 1
1 − π, k = h = 0
0, h = 1, k = 0

(8)

with π being the overall probability of replacing a zero with a one in the self report response.

3 SGR simulation study 1 (dichotomous items)

3.1 Faking model

For the faking good model we used the simple replacement distribution defined in Eq. (8). In
this first simulation study we modelled a context in which binary responses were exclusively
subject to positive feigning. In sum, the model described the simplest data replacement
process and, in the absence of further knowledge about the process of faking, all entries in
the original data set were assumed to be equally likely in the process of replacement (PRPP
assumption).

3.2 Simulation design and data conditions

Now we are in the position to provide all details of our first simulation design. Four factors
were systematically varied in a complete four-factor design:

a. the sample size (I), at two levels: 30 and 1001;
b. the number of dichotomous items (J) in the composite score, at three levels: 6, 12, and

18;
c. the equal factor loadings (L) of the single factorial model, at 19 levels: .05, .10, . . . , .95

(by a.05 step);
d. the percentage of fake–good replacements (K) in the original data, at 20 levels:

0, 5, . . . , 95 % (by a 5 % step).

Let ni , n j , λ, and k be distinct levels of factors I, J, L, and K, respectively. The following
procedural steps were repeated 4,000 times for each of the 2 × 3 × 19 × 20 = 2, 280
combinations of levels (ni , n j , λ, k) of the simulation design:

1. Generate a raw-data set D with size ni according to the single factorial model with n j

variables and equivalent factor loadings λ. The data generation was performed using a
standard MC procedure based on multivariate normal data (Fan et al. 2002; Kaiser and
Dickman 1962).

2. Dichotomize D using the method described by Jöreskog and Sörbom (1996b).
3. Sample a fake data matrix F using the conditional replacement probability distribution

with replacement parameter θF = π = k
100 (see Eq. 8).

4. Compute the sample alpha coefficient on the covariance matrix of F as well as on the
covariance matrix of the original dichotomized data D and save their values for later
analyses.

1 Recommendations of sample size requirements for reliability studies vary widely in the literature. For
example Fleiss (1981) suggests that a sample size of 15–20 observations is enough, whereas Nunnally and
Bernstein (1994) recommend a sample size of at least 300 observations. In this study, we consider I = 30 as
an example of very small sample size (lower bound condition) and I = 100 as an example of medium/large
sample size.
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Fig. 3 Means of coefficient alpha as a function of percentage of replacements, factor loading value, number
of dichotomous items, and sample size. Top panel small sample condition (I = 30). Bottom panel larger sample
condition (I = 100). Performance curves corresponding to loadings ≥ 0.50 (resp.< 0.50) are represented with
black (resp. ligth grey) lines

This algorithm was used to generate 4,000 distinct matrices F and associated alpha coefficient
estimates for each combination of levels (ni , n j , λ, k) of the SGR simulation design. This
number of replications was chosen to achieve reasonable estimation stability in the tail regions
of the alpha estimates. Note that in step 3, if k = 0, then the fake matrix F reduces to the
data matrix D as the probability of replacement π boils down to zero (see Eq. 8). The whole
procedure generated a total of 9, 120, 000 = 4, 000 × 2 × 3 × 19 × 20 new fake matrices
as well as an equivalent number of alpha coefficient estimates. Moreover, by varying the 19
values of λ we were able to generate original data that produced alpha coefficient estimates
spanning the entire range of the statistic.

Some additional details are necessary concerning the discretization procedure adopted
in step 2. After sampling continuous data from the distribution described in step 1, we
transformed these samples into dichotomous (0/1) data by applying a single threshold that
remained constant across all data D. Since, a dichotomous variable has only one distinct
threshold, −∞ ≤ υ1 < +∞, the normal quantile 0 was used as the corresponding threshold
value. Finally, the original continuous data di j was transformed into 1 if di j > 0; otherwise
the new value was set to 0.

In the current and in the next simulation study all the data were simulated using a combi-
nation of R scripts (R Core Team 2012).

3.3 Results and discussion

Figure 3 (faking effect chart) shows the mean of the sample alpha coefficient as a function
of factors I, J, and K, respectively. For the sake of convenience, in the faking effect chart we
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Table 1 Partial η2 × 100 and ANOVA results for the first simulation study

Partial η2 × 100 Sum sq Df F value p

I 0 0.46 1 9.79 0.0018

J 9 10.36 2 109.39 0.0000

L 47 95.02 1 2, 007.42 0.0000

I by J 0 0.00 2 0.03 0.9704

I by L 0 0.09 1 1.84 0.1752

J by L 1 0.94 2 9.98 0.0000

I by J by L 0 0.00 2 0.01 0.9921

Residuals 107.36 2, 268

The three-way ANOVA was computed on the collection of 2,280 sample coefficient means obtained by pooling
all the means across the levels of factor K

represented all the performance curves generated by lambda values greater than 0.5 with black
lines; whereas the performance curves with lambda values not greater than 0.5 were depicted
using light grey lines. Note that in this chart the original uncorrupted alpha values always
correspond to the non-replacement condition (k = 0). We can easily identify a dominance
relation in the faking effect chart. In particular, let α1 and α2 be two original alpha values such
that α2 > α1, then the performance curve of α2 always dominates that of α1. This dominance
relation was observed across all the six conditions represented in Fig. 3. In sum, the alpha
coefficient resulted sensitive to fake perturbation as the sample alpha mean decreased by
increasing levels of replacements, that is to say, it degraded with larger amounts of fake
perturbations. To determine whether the factors sample size, number of dichotomous items,
and loading value (dichotomized into two levels: <0.5 and ≥0.5) affected changes in the
average performance of the sample α coefficient, a 2 (I) × 3 (J) × 2 (L) analysis of variance
(ANOVA) was conducted by pooling the sample α means across all the levels of factor K.
The percentage of variance explained by each of the three factors is presented in Table 1. The
main effects of factors I, J, and L were all statistically significant (all ps <0.01) as well as
the interaction J by L (p<0.01). All the other sources were not statistically significant. The
percentage of variance explained by factor J and factor L were 9 % and 47 %, respectively.
By contrast, factor I as well as the interaction J by L did not account for any substantial
variance in the data (≤ 1 %). Finally, all pairwise comparisons between the levels of factor
J resulted statistically significant at a Tukey HSD test (all ps <0.01).

We recall that the reliability of a test score is higher if the error variance is smaller
relative to the test score variance. Moreover, we would also expect that the sample reliability
should approach its maximum with high correlated items and uncorrupted data, but also
degrade substantially under massive fake data perturbation. The results of our first SGR
simulation study led us to believe that the sample alpha coefficient was clearly sensitive to
fake perturbations as, in general, the sample alpha mean decreased by increasing levels of
replacements in the data sample. Moreover, the sample alpha coefficient was also sensitive
to number of items in the dichotomous scale. This latter result is not difficult to understand
and is consistent with those discussed in other researchers about the relationships between
alpha performance and number of items in a composite score (e.g., Lord and Novick 1968;
Green et al. 1977; Cortina 1993). For example, Cortina (1993) showed that number of items
had a profound impact on alpha, especially at low levels of average item intercorrelation
and, in general, this relationship was positive and curvilinear (Komorita and Graham 1965).
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Fig. 4 Four examples of conditional replacement distributions for a 5-point discrete r.v. Each column in the
graphical representation corresponds to a different conditional replacement distribution with π = 0.4 and one
of the four different assignments for the shape parameters (γ = 1.5, δ = 4; γ = δ = 1; γ = δ = 3; and
γ = 4, δ = 1.5). Each row in the graphical representation corresponds to a different original 5-point discrete
value h

The results of our first simulation study extended these findings also in the context of fake
corrupted data.

4 SGR simulation study 2 (ordered rating items)

In this second SGR simulation study we evaluated the sensitivity of the sample alpha coeffi-
cient to different modulations of graded fake perturbations in 5-point Likert scales.

4.1 Faking models

For the modeling of the faking process we introduced four new modulations of graded
fake perturbations: uninformative/neutral faking, average faking, slight faking, and extreme
faking. In particular, we used the replacement distribution defined in Eq. (7) to sample fake
good observations in the new SGR simulation study.

The uninformative model (γ = δ = 1) is characterized by the uniform support fake–good
distribution [see Eq. (3)] and is based on the PRPP assumption. This principle reflects that in
the absence of further knowledge all entries in the original data set D as well as all candidate
replacement values are assumed to be equally likely in the process of replacement. Figure 4
(second column) shows four examples of uniform support fake–good distributions.

The average model (γ = δ = 3) represents a complication of the uniform support fake–
good distribution and is characterized by a symmetric kernel located at around the average
distance between the value h+1 and the upper bound Q. In this model the chance to replace an
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original value h with another greater value k decreases as a function of the distance between
k and (Q + h + 1)/2. This property reflects that in the process of faking an individual
will on average replace the original response with a new fake value which lies at the mean
distance between this original response and the most extreme value in the scale. Figure 4
(third column) shows four examples of uniform support fake–good distributions.

The slight model (γ = 1.5; δ = 4) describes an asymmetric faking good configuration
in which the observed self report measure corresponds to a moderate positive shift in the
value of the original response. Figure 4 (first column) shows four examples of conditional
replacement distributions for slight faking. In this model the chance to replace an original
value h with another greater value k decreases as a function of the distance between k and h.

The extreme model (γ = 4; δ = 1.5) describes an asymmetric faking good configuration
in which the observed self report measure corresponds to an exaggerated positive shift in the
value of the original response. Figure 4 (fourth column) shows four examples of conditional
replacement distributions for extreme faking. Unlike the slight model, in the extreme model
the chance to replace an original value h with another greater value k increases as a function
of the distance between k and h.

Notice that the uninformative and average models are examples of faking models with
symmetric kernels; whereas, the slight and extreme models represent instances of faking
models with asymmetric kernels.

4.2 Simulation design and data conditions

The second simulation design included all the factors of the first simulation study plus an
additional factor, called type of faking model (M), at four levels: uninformative, average,
slight, and extreme. Therefore, five factors were systematically varied in a complete five-
factor design.

Let m be a generic level of factor M. The following procedural steps were repeated 4,000
times for each of the 9,576 combinations of levels (ni , n j , λ, k, m) of the new simulation
design:

1. Generate a raw-data set D with size ni according to the single factorial model with n j

variables and equivalent factor loadings λ. The data generation was performed using the
same procedure described in the first simulation study.

2. Discretize D on a 5-point scale using the method described by Jöreskog and Sörbom
(1996b).

3. Sample a fake data matrix F using the conditional replacement probability distribution
with replacement parameter θF = (π = k

100 , γm, δm) and the discretized data D (see Eq.
7). The coefficients γm and δm refer to the shaping parameters of model m.

4. Compute the sample alpha coefficient on the covariance matrix of F as well as on the
covariance matrix of the original discretized data D and save their values for later analyses.

The whole procedure generated a total of 38, 304, 000 = 4, 000 × 2 × 3 × 19 × 21 × 4 new
fake matrices as well as an equivalent number of coefficient alpha estimates.

The discretization procedure adopted in Step 2 was a straightforward generalization of the
one described in the first simulation study for the dichotomous items. In particular, since a five-
category ordinal variable has four distinct thresholds, −∞ < υ1 < υ2 < υ3 < υ4 < +∞,
the normal quantiles, −1.53, −0.49, 0.49, and 1.53, were used as corresponding thresh-
old values. Finally, the original continuous data set D was discretized into symmetrically
distributed ordinal variables (Step 2) on the basis of these four threshold values.
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Fig. 5 Means of coefficient alpha as a function of percentage of replacements, factor loading value, number
of 5-point rating items, and type of faking model for the larger sample size condition (I = 100). We omitted
the graphical representation for the I = 30 sample size condition as it resulted undistinguishable from the other
condition I = 100 (see also the main text). Performance curves corresponding to loadings ≥ 0.50 (resp. < 0.50)

are represented with black (resp. ligth grey) lines

4.3 Results and discussion

Figure 5 (faking effect chart) shows the mean of the sample α coefficient as a function of
factors J, K, and M for the I = 100 sample size condition only. Like for the dichotomous case,
also in the second simulation study the faking effect chart was characterized by a dominance
relation. In general, the sample alpha mean decreased by increasing levels of replacements as
it degraded with larger amounts of fake perturbations. To evaluate if the factors sample size,
number of items, loading value (dichotomized into two levels: <0.5 and ≥0.5) and model of
faking influenced changes in the average performance of sample α, a new 2 (I) × 3 (J) × 2
(L) × 4 (M) analysis of variance (ANOVA) was conducted by pooling the sample α means
across all the levels of factor K. Table 2 reports the percentage of variance explained by
each of the four factors I, J, L, and M, respectively. All the main effects resulted statistically
significant (all ps <0.01) as well as the interactions I by L (p<0.05), J by L, M by L, and
J by M by L (all ps <0.01). All the other interactions were not statistically significant. The
percentage of variance explained by J, L, and M were 16 %, 67 % and 14 %, respectively.
By contrast, all the other significant sources did not account for any substantial amount of
percentage of variance in the data. Like for the dichotomous item case, also in this second
simulation study the models with a larger number of items (J) yielded on average better
performances (all ps <0.01 at a Tukey HSD test). As expected, the extreme model showed
the worse performance (all ps <0.01 at a Tukey HSD test), whereas the slight model was
substantially not sensitive to fake perturbation and in general yielded the best performance
(all ps <0.01 at a Tukey HSD test). Finally, the uninformative model and the average model
did not differ significantly (p = 0.516) from one another.
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Table 2 Partial η2 × 100 and ANOVA results for the second simulation study

Partial η2 × 100 Sum sq Df F value p

I 0 1.02 1 34.77 0.0000

J 16 54.48 2 925.91 0.0000

M 14 45.44 3 514.89 0.0000

L 67 558.11 1 18, 970.58 0.0000

I by J 0 0.03 2 0.47 0.6261

I by M 0 0.05 3 0.57 0.6373

J by M 0 0.08 6 0.46 0.8413

I by L 0 0.13 1 4.56 0.0327

J by L 0 0.83 2 14.16 0.0000

M by L 1 2.95 3 33.44 0.0000

I by J by M 0 0.00 6 0.00 1.0000

I by J by L 0 0.00 2 0.04 0.9604

I by M by L 0 0.00 3 0.01 0.9988

J by M by L 0 0.90 6 5.10 0.0000

I by J by M by L 0 0.00 6 0.01 1.0000

Residuals 280.31 9, 528

The four-way ANOVA was computed on the collection of 9,576 sample coefficient means obtained by pooling
all the means across the levels of factor K

In sum, we can read the following ranking from the pairwise comparison analysis in factor
M:

extreme model < (uninformative model ∼ average model) < slight model,

where X < Y (resp. X ∼ Y ) means that the performance of alpha in model X is strictly
worse than (resp. is not different than) that in model Y .

Our results demonstrate empirically that the extreme model was clearly more sensitive
to fake perturbation than the other three models. In what follows, we propose an answer
to explain what in the extreme model disposes the coefficient alpha to be affected more by
increasing levels of replacements in the observed data. Since the sample alpha coefficient
is based on a transformation of the covariance matrix S, we studied how S was affected by
increasing levels of fake replacements in the data in the four faking models. The main result
was that, on the one side, the average covariances decreased by increasing amount of fake
data perturbations, as fake observations usually tend to weaken the original relationships
in the data. One obvious consequence is that the corresponding correlation matrices also
tend towards the identity matrix I and this tendency was more evident (faster) in the extreme
model. On the other side, the average variances followed a hump shaped curve as a function of
increasing levels of fake replacements. In particular, the largest variances were observed for
levels of fake replacements close to 50 %, whereas the lowest variances occurred at the lowest
or highest levels of fake replacements. Also for the variances, this tendency was on average
more evident in the extreme model. Moreover, in the extreme model the expected values in
the fake data matrix were closer to the scale’s upper bound (Q) irrespective of the values
recorded in the original data matrix. Therefore, when the level of replacement is high the
majority of values in the fake data matrix will be close to Q and the corresponding variances
will tend toward a minimal value. The latter explains the very low variances observed in
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the extreme model with very large percentage of replacements. Nonetheless, in the extreme
model the proportion between the sum of all variances and the sum of all the covariances still
tended towards 1 relatively faster as compared to the other faking models, thus reflecting a
larger sensitivity to fake perturbation.

5 Empirical application

We illustrate the entire procedure using data collected by Vidotto and Marchesini (2000) on
the interrelation between personality and student learning2. The current section is divided
into two subsections: the first introduces the empirical data set and the result of a reliability
analysis on the observed data; the second discusses how we can use SGR to reconstruct
unknown true reliability scores on the basis of two alternative faking good scenarios: slight
faking and extreme faking.

5.1 Empirical dataset and sample alpha result

Participants were 351 undergraduate students at the University of Modena (Italy). Ages
ranged from 18 to 31, with a mean of 21.01 and a standard deviation of 2.28. Data consisted
of the participants’ responses to four of the 155 items of the Modena Resources Personality
Inventory (MRPI) (Vidotto and Marchesini 2000) scored on a 5-point agree-disagree scale.
The four items were the following:

1. Several times I gave up because what I wanted to reach was too difficult.
2. I am never really relaxed.
3. When I think of my future I have negative feelings.
4. I have difficulties in sleeping because I cannot stop thinking of my problems.

In the 5-point agree-disagree scale, value 1 denotes that a participant totally agrees with
the statement, whereas value 5 means total disagreement with the statement. The four items
were used as operational indicators of the theoretical construct emotional instability. This
psychological construct was validated in a series of factorial studies that showed an overall
plausibility of the MRPI questionnaire (Vidotto and Marchesini 2000). The reliability of the
MRPI scale based on the four items was modest (̂α = 0.64) denoting that the error variance
computed on the observed (351 × 4) data matrix was not sufficiently smaller relative to
the test score variance. However, the observed result may have been affected by fake good
observations. More precisely, the participants may have deliberately attempted to manipulate
their responses using larger values of the scale to create better impressions (Furnham 1986).
This hypothesis was partially supported by the moderate ceiling effects observed in the data
(see Table 3). Because no additional items on social desirability was available in the MPRI
questionnaire, we decided to perform an SGR analysis on the basis of two hypothetical
scenarios: slight faking and extreme faking.

5.2 SGR analysis

An SGR analysis was used to reconstruct the unknown true reliability score (reliability
reconstruction problem) on the basis of two alternative faking good scenarios (sligth faking
and extreme faking). In the first step of the SGR analysis we defined a simple generative
model representing the hypothetical true model for the data. In particular, the generative

2 We are grateful to Giulio Vidotto and Cristina Marchesini for providing us with such a data set.
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Table 3 Descriptive statistics for the four MPRI items

Value

Item 1 % 2 % 3 % 4 % 5 %

1 7.12 11.97 17.09 26.50 37.32

2 13.11 15.67 24.50 28.49 18.23

3 15.38 14.35 17.95 19.09 33.05

4 3.13 4.56 15.10 19.37 57.83

Marginal
%

9.69 11.64 18.67 23.37 36.62
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Fig. 6 Alpha coefficient distribution as a function of probability of replacement in the two faking models (left
panel and middle panel). alpha coefficient distribution as a function of loading value λ in the single factorial
model (right panel)

model consisted of a single factorial model with equal factor loadings for the four items
considered in this study. However, since we ignored the original true value for the equal
loadings in the factorial model, we simulated original datasets by drawing samples from
populations corresponding to single factorial models with equal factor loadings λ ranging
from .50 to .90 by step .01 (for a total of 41 distinct levels). The generative models were
used to simulated new data without any ceiling effect for the four variables. Moreover, the
generation process also allowed the simulation of original sample alpha values spanning the
natural range of reliability (see Fig. 6, rightmost panel).

In the second step of the SGR analysis we implemented the slight and extreme faking
processes by using the replacement distribution with parameters values γ = 1.5; δ = 4 and
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γ = 4; δ = 1.5, respectively. In particular, the percentage of replacements (K) for the four
items were assigned at 8 distinct levels ranging from 0 to 70 %. Finally, separately for each
faking model and for each combination of levels (λ, k), we generated 5,000 distinct fake data
matrices and saved the resulting sample alpha values. The results of the SGR analysis are
shown in Fig. 6. As expected, extreme faking disposes the coefficient alpha to be affected
more by increasing levels of replacements in the data.

The results of the SGR analysis can also be used to derive approximate CIs for the unknown
true reliability score. A CI is usually interpreted as the range of values that encompass the
population or true value, estimated by a certain statistic, with a given probability (e.g. Cohen
1990; Rice 1995). The interpretation that CIs provide an envelope within which the parameter
value of interest is likely to lie makes sense even when trying to estimate true reliability scores
from observed reliability computed on possible fake-corrupted data. We used a combined
approach based on SGR simulations and classical CI constructs to derive approximate CIs for
the unknown true reliability score. In particular, our procedure boiled down to the following
two simple steps. First, we constructed a small fake interval A = [0.64−0.025, 0.64+0.025]
centered around the observed sample alpha, α̂ = 0.64. Next, separately for each value k of
percentage of replacements (K) in the target faking model, we looked for all the simulated
original (uncorrupted) data sets D such that the corresponding fake data sets F resulted in
fake alpha values α f lying in A. Finally, we used these original (uncorrupted) data sets D to
derive the array of original alpha values αo with which to compute an approximate 95 % CI
for the true alpha in the population. Figure 7 shows the approximate 95 % CI as a function of
percentage of replacements (K) in the two faking models. In particular, the approximate CI
ĈI was based on the empirical quantiles q̂.025 and q̂.975 computed using the array of original
alpha values αo. Note that, ĈI is an estimate of the CI such that

P(αo ∈ CI|α f ∈ A) = 0.95,

with P(αo ∈ CI|α f ∈ A) being the conditional probability over the two events αo ∈ CI and
α f ∈ A, respectively. Figure 7 also shows two clearly separated patterns for the approximate
95 % CIs in the two faking manipulations. Interestingly, under the slight faking hypothesis,
we can reasonable expect a true reliability score for the MRPI scale which is not larger than
0.85 even if a very relevant portion of the original data has been actually corrupted by fake
observations. By contrast, for the extreme faking hypothesis, small amounts of fake responses
in the data can dramatically affect the true reliability of the MRPI scale. Therefore, in this
latter context, we can reasonable expect a very large true reliability score for the MRPI scale.

6 Concluding remarks

The reader may have already noticed some similarities between SGR and standard Monte
Carlo experiments. For example, the idea of generating new data sets. However, the two
approaches are substantially different. Usually a Monte Carlo experiment uses a hypothe-
sized model to generate new data under various conditions (e.g. Robert and Casella 2004).
Therefore the simulated data are used to evaluate some characteristics of the model. This, of
course, implies that the distribution of the random component in the assumed model must
be known, and it must be possible to generate pseudorandom samples from that distribution
under the desired conditions planned by the researcher. Instead of using only the hypothesized
model structure to generate simulated data sets, SGR uses the original data sample in order
to generate a new family of data sets. In particular, these new data sets are obtained by adding
structured perturbations in the original data set. The availability of external knowledge about
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faking SF, extreme faking EF). To achieve reasonable estimation stability in the tail regions of the quantile
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process faking may suggest the modeling of highly structured malingering scenarios. In the
latter case, each new sample represents an alternative malingering scenario which is directly
derived from both the original sample and the assumed malingering model. Next, the result of
a target criterion, such as alpha, can be compared with the ones obtained from the perturbed
samples.

In this paper we used SGR to study how fake observations can affect the behavior of
the reliability of a composite score under the essentially tau-equivalent condition. However,
such a simplified assumption is potentially a concern when more complex empirical data
are considered. But although this limitation, we still preferred to start with this simplified
condition to better evaluate our SGR method under the purest and simplest reliability scenario.
Nonetheless, it is important to stress that the application of the SGR method is in general not
limited to these simplified conditions. In particular, various possible extensions of the SGR
procedure to study reliability coefficients could be considered, both from the point of view
of the relaxation of the tau-equivalent assumption and the structure of the faking models.
For example, if our observations are partitioned in two distinct groups, we may assume
different probabilities of faking in the two groups. This latter scenario can be modelled
by two distinct replacement models, one for each of the two groups. Similarly, we might
relax the tau-equivalent condition by assuming that the loadings in the factorial model are
actually sampled from a proper probability distribution that models natural variabilities in
the relationship between the items and the factor. Furthermore, we could also consider more
complex factorial models based on multidimensional factors with or without equal factor
loadings. In these more realistic scenarios, it would be interesting to compare the sensitivity
of different reliability indices with respect to fake data perturbations.
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