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1 Introduction

How can we evaluate the impact of fake information in real life contexts?
In some circumstances, individuals may tend to distort their behaviors or
actions in order to reach specific goals. For example, in personnel selection
job applicants may misrepresent themselves on a personality survey hoping to
increase the likelihood of being offered a job. Similarly, in the administration
of diagnostic tests individuals often attempt to malinger posttraumatic stress
disorder in order to secure financial gain and/or treatment, or to avoid being
charged with a crime. A major problem in self-report measures is that in
many occasions there is no basis to assume that subjects are responding
honestly. This problem is common in areas like psychology (Hopwood et
al.[4]), organizational and social science (Van der Geest and Sarkodie[10]),
forensic medicine (Gray et. al[3]), and scientific frauds (Marshall[7]).

In such a contexts, self-report measures confront the researcher with a
crucial question: If data included fake data (fd) points, would the answer
to the research question be different from what it actually is? We call this
general question the Fake Effect Question (FEQ). A case of particular em-
pirical interest in data analysis is the situation in which a researcher needs to
estimate the internal consistency or reliability of survey scores. Within this
context the FEQ can be rewritten as: If data contained k% fd points, what
would the true reliability of my survey score be? In particular, we would ex-
pect that a reliability index should approach its maximum under uncorrupted
data, but also degrade substantially under massive data perturbation.
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One of the most popular statistics to compute items reliability is Cron-
bach’s alpha (Cronbach[1]) which is widely used in psychology, business,
nursing, and many other disciplines. Several studies have been conducted
to evaluate some important features of Cronbach’s alpha. For example, MC
simulations have been used to study the robustness of alpha’s confidence in-
tervals under violation of symmetry (e.g., Maydeu-Olivares et al[8]), as well
as the impact of sample size (e.g., Duhachek et al.[2]) and type of estimation
method on the alpha statistic (van Zyl et al.[11]). Notwithstanding, in the
data analysis literature the issue of evaluating the sensitivity of Cronbach’s
alpha to fake data has been substantially neglected.

In this paper we try to fill this gap by proposing an integrated approach,
called MC+SGR, which combines standard Monte Carlo techniques and the
data perturbation procedure SGR (Sample Generation by Replacements;
Lombardi et al.[6]; Pastore and Lombardi[9]) to evaluate the FEQ on the
alpha statistic.

The paper is organized as follows. Section 2 outlines the SGR approach.
Section 3 describes the MC+SGR simulation study for studying Cronbach’s
alpha under two relevant scenarios of faking. In Section 4 we discuss results
of the simulation study. Finally, Section 5 reports some concluding remarks.

2 SGR

In many self-reported surveys the resulted dataset often includes incomplete
records (missing data) and/or fake records (fake data). In such a context
it is worth considering data analytic tools to evaluate the FEQ. Let X and
¢ be the original data set prior to any fake perturbation and a statistic on
X, respectively. Since we usually observe data only after that the faking
process has taken place, many times the original data X cannot be directly
observable. The main goal of a replacement analysis is the evaluation of ¢
under the so called fake data space (FDS) of X. FDS consists of a collection
of new data sets F1,Fy,...,Fp, where each F}, (b = 1,..., B) represents a
different fake perturbation of X. The perturbation is carried out by means of
a probabilistic model R that mimics the faking process of interest. Next, the
distribution of results ¢(F1),...,»(Fp) is finally evaluated and eventually
compared to the original result ¢(X).

A case of particular interest is when X is actually observable like, for
example, in Monte Carlo simulation studies. More precisely, we think of
the simulated dataset X as being represented by an [ x J matrix with I
observations each containing J Likert-type items. A Likert-type item being
an ordinal variable that takes values on a small set Q = {1,...,Q} (e.g.,
Q@ = 2 for dichotomous items and @ = 5 for five-point Likert items). The
main idea of the SGR approach is to construct a new I x J data matrix F
(called the fake data matriz) from X by manipulating each element z;; in X
(Vi=1,...,;Vj=1,...,J) according to a @ x @ replacement matrix R that
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models the faking process. In particular, element rp,, of R (V(p,q) € Q x Q)
denotes the conditional probability p(f;; = q|a;; = p) of replacing an original
observed value p in entry (7, 5) of X with the new value ¢q. By repeating the
same procedure B times we can generate the FDS: F1,Fo,... Fp, and thus
provide the distribution of ¢ under the FDS.

SGR grounds on three basic assumptions: 1) the principle of indiffer-
ence 2) the local replacement property and 3) the total error decomposition
condition. The first assumption grounds on the idea that in the absence of
further knowledge about the process of faking all entries in X are assumed
to be equally likely in the process of replacement. The second assumption
entails that the conditional probability of replacing an initial value in X with
another value in Q only depends on that initial value. More precisely, all the
entries in X showing a same observed value, say p, must have an identical
conditional probability distribution of replacement:

R, =(rp1,.--,7p0)-

Finally, the third assumption regards the way total error can be decomposed
in SGR. Let T be the true (but unknown) I x J data matrix, then the
following identities hold:

F=X+E (1)
= (T+E)+E* 2)
=T +E"" (3)

where E* = X — F is the fake data error matrix, E = T — X is the stan-
dard data error matrix, and EOl — E + E* is the total error matrix. The
error components E and E* are assumed to be stochastically independent.
Two relevant instances of the replacement matrix R will be presented in the
next section, whereas more sophisticated assumptions about the replacement
matrix R will be discussed in the last section of this paper.

3 Simulation study

We first introduce the main tokens of our simulation study. Next, we will
report all details of the MC+SGR. design.

3.1 Cronbach’s alpha

Cronbach’s alpha coefficient (Cronbach[1]) is used as a measure of internal
consistency of a survey or test with a limited number of Likert items. More
precisely, consider a survey composed of J items, Xi,..., X, intended to
measure a single latent attribute or dimension. The main goal is to determine
the reliability of the test score Y = X; + ...+ X, that is, the percentage of
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variance of the survey score that is due to the attribute of which the items
are indicators. In a sample of I respondents, the coefficient alpha statistic is

J ..
a(X) = =7 (1_ Z‘-]ij_;,”sw) (4)

where s,/ is the (j, j')-element of the covariance matrix S of an I x J response
matrix X. Clearly, the value of a does not exceed 1 which, in turn, denotes
a perfect internal consistency. In our study Cronbach’s alpha will play the
role of dependent variable in the MC+SGR simulation design.

3.2 Models of faking

Several malingering contexts can be proposed according to the sensitivity of
self-report measures. In this paper we will limit our attention to two simple,
but relevant faking scenarios: symmetric faking and asymmetric faking. In
the first case we assume the total absence of knowledge about the process of
faking. Given an observed value p in X, all values in Q \ {p} are assumed
to be likely in the process of replacement of p. In other words, this scenario
assumes a pure random malingering model. In contrast, the availability of
external knowledge about the process of faking may suggest the modeling of
more complex scenarios. For example, in personnel selection some subjects
are likely to fake a personality questionnaire to match the ideal candidate’s
profile (positive impression management or fake-good process). In this second
case it could be reasonable to consider a conditional replacement model in
which the conditioning is a function of response polarity.

We used two different replacement matrices Ry, and Rg, to provide a
simple characterization of the faking scenarios described above. Ry, is called
the symmetric uniform replacement matrix and represents a context in which
responses are subject to unpolarized uniform random faking. R, is defined
as

1—v ¥ 7&
. _ ot 5
e {E o)
In Eq. (5), v denotes the probability of non-replacement. R, is called

the asymmetric uniform replacement matrix and represents a fake-good sce-
nario in which f;; > x;;(Vi =1,...,I;Vj =1,..., J). In particular,

1—7y
o= P <4q
Tpg = Y, P=4q (6)
0, Vp>gq

also in Eq. (6), v indicates the probability of non-replacement.
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3.3 Extended MC simulations: MC+SGR

In order to evaluate the impact of fd points on Cronbach’s alpha we used a
standard MC approach to generate a series of artificial data sets X1, X5, ..., Xp
on the basis of statistical properties of a factorial model. For sake of simplic-
ity, in our study we opted for a single factorial model with four observed items
and identical loadings. Next, for each MC simulated data X, (b=1,...,B)
we generated a new perturbed matrix F', on the basis of a particular model of
faking R. Therefore, we may think of each new perturbed data F as an alter-
native informative scenario which is directly derived from the original simu-
lated MC sample X,. Next, the behavior of a the reliability coefficient o was
evaluated with respect to the collection of perturbed samples F1,Fs,... ., Fp
that corresponds to our particular FDS. In this case, of course, the distri-
butional properties of @ are not those that simply hold under a particular
model hypothesis (like for standard Monte Carlo simulation studies); rather
they are the properties under a model whose parameters corresponds to val-
ues fitted from both the MC generating process and the structured collection
of perturbed SGR samples that are generated from the given MC samples.
We call this integrated procedure the MC+SGR, approach.

3.4 Simulation design

Now we are in the position to provide all details of our simulation design. In
order to generate the initial data matrices, we used a single factorial model
with four observed items and identical loadings A, = A (v =1,...,4). More-
over, by varying the values of the loading A we were able to generate data
with « values ranging from .34 (very mild «) to .91 (very high «). The
following procedural steps were repeated for each value of A:

1. 5000 raw-data sets X, with J = 4 items and I = 100 observations were
generated according to a standard MC procedure. Next, each X; (b =
1,...,5000) was converted to a Q-point scale (Q = 2,5) using the method
described by Joreskog and Sérbom([5]. This substep allowed to simulate
Likert-type data at two different levels: dichotomous items and five-point
Likert items that correspond to the most common data in self-report
surveys.

2. For each discrete matrix X, we constructed a collection of fake matri-
ces ,Fy ; by using the replacement matrix R, (2 = su,asu) with non-
replacement proportion v =1 — (k/100) and k = 5,10, ..., 100.

3. For each perturbed data matrix ,Fj; the reliability coefficient a was
finally evaluated.

In sum, four parameters were systematically varied in a complete four-
factorial design:

1. the factorial loading A, at 23 levels: .400,.425, ... ,.950;
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Fig. 1. Fake effect charts for the reliability coefficient a. Fake effect for dichotomous
items in the symmetric (a) and asymmetric (b) conditions. Fake effect for five-point
Likert items in the symmetric (c) and asymmetric (d) conditions.

2. the item scale @, at two levels: 2 and 5;

3. the model of faking z, at two levels: symmetric uniform fake (su) and
asymmetric uniform (asu) fake (fake good);

4. the percentage of replacements k, at 20 levels: 5,10, ...,100.

The whole procedure generated a total of 9200000 = 5000 x 23 x 2 x 2 x 20
new perturbed data matrices.

4 Results

Figure 1 shows the medians of the reliability coefficient « as a function of %
of replacement, model of faking, and item scale for twelve initial population
values of a ranging from .34 to .91. Note that in our simulation design the
initial alpha values always correspond to the hypothetical non-replacement
condition (k = 0). So, for example in Figure 1a, the first curve indicates the
median values of « as a function of percentage of replacement in dichotomous
data with an initial a value of approximately .91. The second curve that for
«a = .88, and so on.

Figure 1a shows the fake effect chart for dichotomous items in the sym-
metric uniform condition. In this panel we may observe a perfect symmetric
convex pattern with minimum at & = 50 which, in turn, corresponds to the
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a\ fake % | 5 10 15 20 30 50 80

< .05 00— .32 .02—.37 .07—.40 .12—.45 .17— .51 24— .59 27— .65
(.05,.10 07—-.30 .14—.39 17— .43 .18—.50 .24—.53 .28—.63 .31—.70
(.10,.15 A1—.34 .16—.41 20— .47 23— .51 .26—.55 .31—.65 .33—.73
(.15,.20 A7—.37 20— .44 24— .49 26— .52 28—.59 32— .68 .35—.75
(.20,.25 22— .40 24— .46 26—.51 .28—.55 .31—.61 .35—.70 .37—.79
(.25,.30 26— .44 .29—.49 .30—.54 .31—.58 .34—.65 .38—.74 .41 — .82
(.30,.35 30— .47 .32—.53 34— .57 .35—.61 .38—.68 .42—.78 .45 — .86
(.35,.40 35—.50 .36—.56 .38—.61 .39—.65 .42—.71 46— .82 .50 — .89
(.40,.45 40 — .54 41— .60 43— .65 44— .69 .AT—.75 53— .86 .56 — .92
(.45,.50 45— .59 46— .64 48 —.69 .50—.73 .53 —.80 .60 — .89 .66 — .94
(.50,.55 50 — .63 .52 —.69 .54—.73 .56 —.77 .60 —.84 .67 —.92 .73 —.95
(.55,.60 56 — .68 .58 —.73 .60 —.78 .63—.81 .67 —.87 .75—.94 .80 — .95
(.60,.65 61—.72 64— .78 .66—.82 .69—.86 .74— .91 .81 —.95 .85— .96
(.65,.70 67 —.77 70— .82 .72—.8 .75—.89 .80—.94 .86—.96 .88 — .96
(.70,.75 72-.81 75— .8 .78—.90 .81 —.93 .85—.95 .89—.96 .90 — .96
(.75,.80 78— .86 .80 —.90 .83 —.93 .86—.95 .89—.96 .92—.96 .90 — .96
(.80,.85 83—.90 .86—.94 .88—.95 .90—.96 .92—.96 .96 — .96 -
(.85,.90 88 —.94 90— .96 .92—.96 .93—.96 .94 — .97 - -
(.90,.95 93 —.96 .94— .97 .95—.97 .96 — .97 - - -

(.95,1] .96 — .97 - - — — — -

Table 1. Alpha correction table for samples with size I = 100 and J = 4 (five-point
Likert items). Given an empirically observed alpha [rows] and an hypothetical per-
centage of fake good [column], the table then yields the MC+SGR 90%-percentile
intervals of the true population alpha.

maximum loss for alpha. Note that, if & = 50, then v = 1 — (50/100) = .50.
In other words, rpq = .50 for all possible combinations of dichotomous values
p and ¢. This latter case characterizes the maximum entropy condition for
the generated FDS and, therefore, minimum value for alpha. By contrast, if
k =100, then v = 0; that is to say, we replace the whole data matrix with its
dual representation (1 +— 2 and 2 +— 1). Since, « is based on the covariance
matrix (see Eq. (4)), its value will not change when computed on the dual
representation of the data. Finally, a large dominance relation can be read
from the alpha curves shown in Figure la. In particular, if oy and «ao denote
two distinct initial values for alpha such that a; > s, then the aj-curve
dominates the as-curve.

Figure 1b shows the fake effect chart for dichotomous items in the asym-
metric uniform condition (fake good). This panel shows a decreasing mono-
tonic pattern converging at k = 95, which corresponds to the maximum loss
for alpha. Note that k = 95 is also the maximal replacement percentage that
is allowed in this condition. Figure 1lc and Figure 1d show the fake effect
charts for the 5-point Likert items in the symmetric uniform and asymmetric
uniform conditions, respectively. Results can be interpreted accordingly.

Our MC-SGR study can also be used to construct correction tables for
empirically observed a (see Table 1). So, for example, let us assume that
we observed a = .67 for a data set with 100 observations and four 5-point
Likert items. Moreover, we also assume that an asymmetric process of faking
(i.e., fake good) has affected approximately 20% of our data. Then, by using
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Table 1 we can infer that the true population alpha lies within .75 and .89
(MC+SGR 90%-percentile interval).

5 Concluding remarks

In this paper we presented an integrated MC+SGR approach to study how
fake observations can affect the behavior of the well known Cronbach’s alpha
statistic. Various possible extensions of the MC+SGR approach could be
considered, both from the point of view of the relaxation of the three main
SGR assumptions and the structure of the replacement matrix R. For exam-
ple, if our observations are partitioned in two distinct groups, we may assume
different probabilities of faking in the two groups. This latter scenario can
be modeled by two distinct replacement matrices, one for each of the two
groups.
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