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Abstract This study extended the findings of a former simulation study (Multivar Behav

Res 47:519–546, 2012) to evaluate the sensitivity of a large set of SEM-based fit indices to

fake-good ordinal data. In the new simulation study we manipulated a comprehensive set

of factors (including 3 robust estimation procedures and 3 different faking good models)

that could influence the performance of 8 widely used fit indices. The simulation study

conditions were chosen to highlight the differences among the fit indices, as well as to

cover a wide variety of conditions. Our results demonstrated empirically that the normed fit

index (NFI) turned out to be the most reliable fit index with a high sensitivity to fake

perturbations. This result was evident in all the simulation design conditions except for

those characterized by slight faking levels of perturbations. Interestingly, unlike NFI, the

comparative fit index seemed to be highly insensitive to fake data when robust estimation

conditions were considered. On the basis of the results of the simulation study we proposed

a simple qualitative criterion to evaluate the impact of faking on statistical results.
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1 Introduction

In situations where a model is fitted on empirical data containing possible fake measure-

ments, a SEM-based fit index that evaluates that model may not be very helpful in deciding

whether or not it can be appropriate in representing the true relationships under study.

Ideally, we would expect that a good fit index should approach its maximum under correct

model specification and uncorrupted data but also degrade substantially under massive fake

data. A variety of fit indices can be used to evaluate the overall fit of a structural equation

model (e.g., Browne and Cudeck 1993; Hu and Bentler 1998; Jöreskog and Sörbom

1996a). However, because standard fit indices are designed to detect model misspecifi-

cation, but they are not designed to detect the eventual presence of fake observations in the

data, it is important to evaluate their behavior in faking scenarios. An open question is

whether the results of a standard goodness-of-fit analysis can be integrated in order to

provide useful information about the presence of fake perturbations in the data. In this

paper, we will show that when a factorial model is fitted to Likert-type ordinal data using

robust estimation procedures, the adoption of a simple qualitative criterion based on the

performances of two well-known fit indices (NFI and CFI) can serve to yield predictions

about statistical results corrupted by fake data.

Many self-report measures of attitudes, beliefs, personality, and pathology are con-

structed using items that may be easily manipulated by respondents. Several examples of

data manipulation or data distortion can be found in areas like psychology (Hopwood et al.

2008), organizational and social science (Van der Geest and Sarkodie 1998), forensic

medicine (Gray et al. 2003), and scientific frauds (Marshall 2000). In general, possible fake

data confront the researcher with a crucial question: If data included fake data points, what

would the chance be that the model is still a good one? Clearly, voluntarily perturbation of

data constitutes biased information which certainly weakens the accuracy of statistical

inferences.

There is now a vast psychometric literature in item response theory (IRT) and item

factor-analytic (FA) modeling about the conceptualization of faking, the modeling of its

components, and its interrelationships with individual differences. In particular, psycho-

metric methods have been developed to identify and evaluate subjects responses for

feigning (fake-bad, malingering) or defensiveness (fake-good, self-deception, social

desirability) using factor analytic approaches (e.g., Ferrando 2005; Ferrando and Angu-

iano-Carrasco 2009, 2013; Fox and Meijer 2008; Holden and Book 2009; Leite and Cooper

2010; McFarland and Ryan 2000; Paulhus 1991; Ziegler and Buehner 2009), factor mix-

ture models (e.g., Leite and Cooper 2010), IRT models (e.g., Ferrando and Anguiano-

Carrasco 2009; Zickar and Drasgow 1996; Zickar and Robie 1999), mixed-models IRT

(e.g., Zickar et al. 2004), case-diagnostic procedures (e.g., Pek and MacCallum 2011), and

person-fit statistics (e.g., Zickar and Drasgow 1996; Zickar and Robie 1999). Notably, the

majority of these methods are based on ad hoc empirical paradigms such as, for example,

coached faking or ad-lib faking that require the administration of self-report questionnaires

in a laboratory-type setting (e.g., honest motivating condition vs. faking motivating con-

dition). However, one of the main problems with laboratory studies comparing situations

with different types of instructions for self-representation is that they may suffer from the

lack of ecological validity and may not provide sufficient support for their use in a large

number of applied settings. In the real practice, self-reported responses are usually col-

lected using a single administration and generally the statistical models are simply eval-

uated by using some type of goodness-of-fit statistic. Therefore, a systematic evaluation of
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the pros and cons of standard goodness-of-fit indices on data collected in sensitive contexts

can be of relevant interest for researchers working in psychology and social science fields.

Unfortunately, there is little knowledge about how the performance of a factorial model

or a structural equation model will be in general affected from fake data perturbation. We

are only aware of one study (Lombardi and Pastore 2012) which explored this issue in

more depth using a systematic Monte Carlo simulation design. In particular, in this study

the authors used a novel probabilistic procedure, called sample generation by replacement

(SGR), to simulate artificial fake data and evaluate their impact of goodness-of-fit per-

formances. The results showed that none of the fit indices considered in their simulation

study really stood out as having ideal behavioral patterns: sensitive to fake perturbations

but insensitive to other irrelevant factors (e.g., model types and sample size). However,

important local differences were observed between the indices. In particular, some

incremental fit indices (CFI, NNFI and NFI) were clearly more sensitive to fake pertur-

bation than other absolute fit indices (GFI, AGFI, and ECVI), at least when the maximum

likelihood (ML) estimation procedure was considered. Very surprisingly, only NFI turned

out to be sensitive to fake data also under a weighted least square (WLS) estimation

condition. Therefore, the authors concluded by recommending to include NFI in an ideal

battery of model fit indices to evaluate the effect of potential fake observations in the data.

However, the SGR simulation study by Lombardi and Pastore (2012) was also char-

acterized by some important limitations. First, because the focus of their study was on the

impact of fake data under empirical investigations that are commonly encountered in

applied research, they preferred to limit the SGR analysis to small sample sizes (100 and

200) only. Second, in the SGR simulation the fake perturbations were restricted to a simple

uniform support fake-good distribution representing a purely random but polarized faking

process. However, it is known that some empirical contexts may require different model

assumptions about the faking process that cannot be captured by this simple uniform faking

model. For example, different modulations of graded faking such as slight faking and

extreme faking (e.g., Zickar et al. 2004; Zickar and Robie 1999) are clearly not consistent

with this hypothesis. Finally, third, the estimation procedures were limited only to ML and

WLS. However, it is known that the very popular ML may not have theoretical justification

for use with ordinal variables and full WLS usually requires much larger sample sizes

(maybe in the thousands) to fully avoid estimation biases (Ding et al. 1995; Flora and

Curran 2004). A superior approach with ordinal data would have instead been to use

polychoric correlations together with more robust estimation procedures (Beauducel and

Herzberg 2006; Flora and Curran 2004; Ridgon and Ferguson 1991) such as, for example,

unweighted least squares (ULS) or diagonally weighted least squares (DWLS). When used

routinely with the polychoric correlations, these methods are known to provide consistent

parameter estimates as well as correct standard errors (Forero et al. 2009; Yang-Wallentin

et al. 2010).

To fill these gaps, in the current study we performed a new extensive SGR simulation

study to investigate the sensitivity of 8 commonly used SEM-based fit indices (goodness of

fit index, GFI; adjusted goodness of fit index, AGFI; expected cross validation index,

ECVI; standardized root-mean-square residual index, SRMR; root-mean-square error of

approximation, RMSEA; comparative fit index, CFI; nonnormed fit index, NNFI; and

normed fit index, NFI) to fake perturbations of ordinal data in three different SEM models

under a new set of simulation conditions. In particular, the new SGR simulation study was

based on the following three important features:
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1. it involved larger sample sizes to better evaluate the performances of the SEM-based

fit indices

2. it included three additional robust estimation procedures, namely robust RULS, robust

RDWLS, and robust maximum likelihood (RML) (see Yang-Wallentin et al. 2010)

3. it extended the data replacement procedure to mimicking also slight faking and

extreme faking in the data perturbation process.

Finally, on the basis of the results of the new SGR simulation study, we proposed also a

simple qualitative criterion to evaluate the results of a SEM-based analysis under faking

corrupted data.

To provide a self-contained exposition, the first part of the paper briefly recapitulates the

main aspects of the SGR approach to simulate fake data. Next the models of faking and the

target SEM models used in this study are introduced. The second part describes the SGR

simulation and reports results about the fit indices’ performances. The third section

illustrates the new qualitative criterion to evaluate the performance of a factorial model

under faking scenarios. Finally, the article ends by presenting conclusions and some rel-

evant comments about limitations, potential new applications and extensions of the SGR

approach.

2 Sample generation by replacement (SGR)

SGR is a probabilistic resampling procedure that can be used to generate artificial fake

discrete or ordinal data with a restricted number of values (Lombardi and Pastore 2012,

2014; Pastore and Lombardi 2014). SGR uses a two-stage sampling procedure based on

two distinct generative models: the model defining the process that generates the data prior

to any fake perturbation (data generation process) and the faking model which is used to

perturb the data (data replacement process). By repeatedly sampling data from the SGR

procedure we can generate the so called fake data sample (FDS) and eventually study the

distribution of some relevant statistics computed on this simulated space. In SGR the first

process is represented by some standard Monte Carlo procedures for ordinal data whereas

the data replacement process is implemented using ad hoc probabilistic faking models.

Overall, the entire procedure is split into two conceptually independent and possibly

simpler components: data generation ? data replacement.

More formally, in the SGR framework the original (fake-uncorrupted) data is repre-

sented by an I � J matrix D, that is to say, I i.i.d. observations (hypothetical participants)

each containing J elements (hypothetical participant’s responses). We constraint entry dij
of D (i ¼ 1; . . .; I; j ¼ 1; . . .; J) to take values on a small ordinal range VQ ¼ f1; 2; . . .;Qg
(e.g., Q ¼ 5 for 5-point Likert items). In particular, let di be the ð1� JÞ array of D
denoting the hypothetical pattern of responses of participant i. The array di is a multidi-

mensional ordinal random variable with probability distribution pðdijhÞ, where h indicates

the vector of parameters of the probabilistic model for the data generation process. Con-

sequently, the data matrix D ¼ ½d1; d2; . . .; dI �T is drawn from the joint probability

distribution

pðDjhÞ ¼
YI

i¼1

pðdijhÞ: ð1Þ

which represents the original data generation process. The main idea underlying our

replacement approach is to construct a new I � J ordinal data matrix F, called the fake data
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matrix of D, by manipulating each element dij in D according to a replacement probability

distribution (data replacement process). Let f i be the ð1� JÞ array of F denoting the

replaced pattern of fake responses of participant i. The fake response pattern f i is a

multidimensional ordinal random variable with conditional replacement probability

distribution

pðf ijdi; hFÞ ¼
YJ

j¼1

pðfijjdij; hFÞ; i ¼ 1; . . .; I ð2Þ

where hF indicates the vector of parameters of the probabilistic faking model in the data

replacement process. The main assumption of the conditional replacement distribution is

that each fake response fij only depends on the corresponding data observation dij and the

model parameter hF . Because the patterns of fake responses are also i.i.d. observations, the

fake data matrix F ¼ ½f1; f2; . . .; fI �T is drawn from the joint probability distribution

pðFjD; hFÞ ¼
YI

i¼1

YJ

j¼1

pðfijjdij; hFÞ ð3Þ

Finally, the simulated joint data array ðD;FÞ is described by the joint probability

distribution

pðD;Fjh; hFÞ ¼
YI

i¼1

pðdijhÞpðf ijdi; hFÞ ð4Þ

¼
YI

i¼1

pðdijhÞ
YJ

j¼1

pðfijjdij; hFÞ ð5Þ

Because SGR is a data simulation procedure to artificially generate fake data, the

parameter array hF usually represents hypothetical a priori knowledge about the distri-

bution of faking (e.g., the chance of observing a fake observation in the data) or empiri-

cally based knowledge about the process of faking (e.g., the direction of faking-fake-good

vs. fake bad-).

Overall, SGR takes an interpretation perspective which incorporates in a global model

all the available information (empirical or hypothetical) about the process of faking and the

underlying true model representation. In particular, we stress that SGR is not a method for

detecting faking at the individual level but a rational approach to evaluate statistical results

under potential faking corrupted data. In addition, SGR has a statistical descriptive nature

and tries to capture the phenomenological effect of faking according to an informational,

data-oriented perspective based on a data replacement (information replacement) scheme.

This makes SGR related in spirit to other statistical approaches such as, for example,

uncertainty and sensitivity analysis (Helton et al. 2006) and prospective power analysis

(Cohen 1988). All these approaches are characterized by an attempt to directly quantify

uncertainty of general statistics computed on the data by means of specific hypothesis.

2.1 Representing SEM models with ordinal variables in SGR

Following the UVA framework (Muthén 1984; Lee et al. 1990; Jöreskog 1990) we assume

that there exists a continuous data matrix D� underlying the original ordinal data matrix D.
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More precisely, D� is a random sample from the statistical population determined by the

true population parameters hS of a target SEM model. In particular, hS defines the form of

the SEM through the specifications of its means and intercepts, variances and covariances,

regression parameters, and factor loadings. Let d�i be the (1� J) array of D� denoting the

pattern of underlying continuous responses of participant i. Without loss of generality, it is

convenient to let d�i have the multivariate normal distribution with density function /ð0;RÞ
where 0 and R denote the (1� J) array of zeros representing the location vector of / and

the (J � J) correlation matrix R ¼ RðhSÞ implied by the target SEM model, respectively.

The connection between the ordinal variable dij and the underlying variable d�ij in D� is

given by

dij ¼ q iff aq�1\d�ij\aq; q ¼ 1; . . .;Q; i ¼ 1; . . .; I; j ¼ 1; . . .; J;

where

a0 ¼ �1; a1\a2\. . .\aQ�1; aQ ¼ þ1;

are threshold parameters. For each variable dij with Q categories, there are Q� 1 strictly

increasing threshold parameters: a ¼ ða1; . . .; aQ�1Þ. Note that in our simplified context the

vector of thresholds a is assumed to be the same for all the J underlying continuous

variables. Therefore, the probability distribution for the multidimensional ordinal random

variable di is given by

pðdijhMÞ ¼
Z adi1

aðdi1Þ�1

� � �
Z adiJ

aðdiJ Þ�1

/ðzij0;RÞdzi ð6Þ

with hM ¼ ða;RÞ and zi ¼ ðzi1; . . .; ziJÞ being the parameter vector of the original data

generation model and the values for the continuous variables d�i , respectively. Finally, the
joint probability distribution is defined as

pðDjhMÞ ¼
YI

i¼1

Z adi1

aðdi1Þ�1

� � �
Z adiJ

aðdiJ Þ�1

/ðzij0;RÞdzi ð7Þ

In the simulation study based on the SGR procedure we will first generate the continuous

data D� (according to the target SEM model) and subsequently transform it into its discrete

counterpart D by using appropriate fixed threshold values a. Notice that this latter sampling

procedure is equivalent to a direct sampling from the distribution defined in Eq. 7.

2.2 Representing models of faking in SGR

Faking good can be defined as a conscious attempt to present false information to create a

favorable impression with the goal of influencing others (e.g., Furnham 1986; McFarland

and Ryan 2000; Zickar and Robie 1999). More in general, there is a broad consensus that

faking is an intentional response distortion aimed at achieving a personal gain (e.g.,

MacCann et al. 2011). For example, in personnel selection some job applicants may

misrepresent themselves on a personality test hoping to increase the likelihood of being

offered a job (e.g., Paulhus 1984; Zickar and Robie 1999; Donovan et al. 2014).

In SGR a fake-good manipulation represents a context in which the responses are

exclusively subject to positive feigning:
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fij � dij i ¼ 1; . . .; I; j ¼ 1; . . .; J: ð8Þ

In particular, the fake-good (as well as the fake-bad) scenario always entails a conditional

replacement model in which the conditioning is a function of response polarity. In this

study we used a flexible replacement distribution that mimicked the effect of faking good

perturbations in ordered variables for different faking modulations (Pastore and Lombardi

2014; Lombardi and Pastore 2014). In particular, the replacement distribution is defined as

follows (see also Fig. 1)

pðfij ¼ q0jdij ¼ q; hFÞ ¼

1; q ¼ q0 ¼ Q

pDGðq0; qþ 1;Q; c; dÞ; 1� q\q0 �Q

1� p; 1� q0 ¼ q\Q

0; 1� q0\q�Q

8
>>><

>>>:
ð9Þ

Eq. (9) denotes the conditional probability of replacing an original observed value q in

entry (i, j) of D with the new value q0. In Eq. (7) the terms hF and DG are the parameter

vector hF ¼ ðc; d; pÞ of the faking model and the generalized beta distribution for discrete

variables with bounds a ¼ qþ 1 and b ¼ Q, respectively (for further details see Pastore

and Lombardi 2014). Note that in the parameter vector, c and d are strictly positive shape

parameters for the replacement distribution. Finally, the parameter p denotes the overall

probability of faking good and acts as a weight to rescale DG.

Because of its flexibility, the faking model defined in Eq. (9) can represent both

symmetric (Fig. 1, second column) and asymmetric (Fig. 1, first and third columns)
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Fig. 1 Three models of conditional replacement distributions for a 5-point discrete r.v. Each column in the
graphical representation corresponds to a different conditional replacement distribution with overall
probability of replacement p ¼ 0:4 and one of the three different assignments for the shape parameters
(c ¼ 1:5; d ¼ 4; c ¼ d ¼ 1; and c ¼ 4; d ¼ 1:5). Each row in the graphical representation corresponds to a
different original 5-point discrete value h
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replacement kernels. In particular, if c ¼ d ¼ 1 (Fig. 1, second column), the model reduces

to the uniform support fake-good distribution originally introduced in Lombardi and

Pastore (2012). By contrast, if 1� c\d (resp. 1� d\c), the model mimics asymmetric

faking configurations corresponding to moderate positive shifts (resp. exaggerated positive

shifts) in the value of the original response (Fig. 1, first and third columns). A relevant case

is when p ¼ 0. For this special condition the fake data matrix F reduces to the original data

matrix D.

3 Simulation study

In the following two sections we present the specific faking models and the specific target

SEM models that we used in the simulation study for evaluating the performances of the

goodness-of-fit indices.

3.1 Three relevant models of faking

Several evidences have shown that individuals usually differ in the extent to which they fake

(Zickar and Robie 1999; Zickar et al. 2004). For example, depending on the context, some

individuals may distort their responses at a level that suggests extreme deception, whereas

in other circumstances they can barely exaggerate their personality characteristics (Rosse

et al. 1998). In general, the magnitude of faking differs both among individuals and sen-

sitive contexts. For the modeling of the faking process we used three modulations of graded

fake-good perturbations: uninformative/neutral faking, slight faking, and extreme faking.

The first representation (uninformative model: c ¼ d ¼ 1) is characterized by the uni-

form support fake-good distribution (Lombardi and Pastore 2012). The idea is that in the

absence of further knowledge all entries in the original data set D as well as all candidate

replacement values are assumed to be equally likely in the process of replacement. Figure 1

(second column) shows four examples of uniform support fake-good distributions.

The second representation (slight model: c ¼ 1:5; d ¼ 4) mimicked an asymmetric

faking good scenario in which the observed self report measure corresponded to a mod-

erate positive shift in the value of the original response. In this model the chance to replace

an original value q with another greater value q0 decreased as a function of the distance

between q0 and q which boiled down to a right skewed distribution for the replaced values.

Figure 1 (first column) shows four examples of conditional replacement distributions for

slight faking.

Finally, the third representation (extreme model: c ¼ 4; d ¼ 1:5) described also an

asymmetric faking good scenario in which the observed self report measure corresponded

to an exaggerated positive shift in the value of the original response. Unlike the slight

model, in the extreme model the chance to replace an original value q with another greater

value q0 increased as a function of the distance between q0 and q. This reduced to a kind of

left skewed distribution for the replaced values. Figure 1 (third column) shows four

examples of conditional replacement distributions for extreme faking.

3.2 Target SEM models

To provide a comparison with the results of the original SGR simulation study we adopted

the same three SEM models evaluated in Lombardi and Pastore (2012). The SEM models
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were used for representing the processes that generated the underlying data D� prior to any

fake perturbation (and data discretization). The three factorial models depicted in (Fig. 2)

are commonly encountered in applied research (Paxton et al. 2001; Curran et al. 2002).

The first model, Model 1, had nine measured variables (y1; . . .; y9) and three latent vari-

ables (g1, g2 and g3). Each measured variable loaded on a single latent variable. Moreover,

g2 was regressed on g1, and g3 was regressed on g2. The second model (Model 2) was

similar to Model 1 but contained 15 measured variables (y1; . . .; y15), with five indicators

Fig. 2 Target SEM models. In M1 and M2 all error variances were set to .5 whereas in M3 they were all set
to .09
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per latent variable. Finally, Model 3 had 13 measured variables. The endogenous variables

(y1; . . .; y9) shared the same measurement structure as Model 1 (three indicators per latent

variable), whereas the exogenous variables (x1; . . .; x4) loaded on a new latent variable (n1)
which, in turn, affected g1. More details about the structures of the models and the

parameters assignments are reported in Fig. 2.

In our simulation study, the models also differed in terms of the way fake perturbations

were propagated through the model’s structure. In particular, in Model 1 and Model 2 the

fake perturbation was propagated through all the observed variables (9 for Model 1 and 15

for Model 2). By contrast, in Model 3 the fake perturbation was propagated through the

endogenous variables, y1; . . .; y9, only; whereas the exogenous variables, x1; . . .; x4, were
considered fake independent. We expect that in general a fit index should be less sensitive to

Model 3 as compared to Model 1, as the first contained proportionally less fake observations

than the latter. By contrast, a good fit index should be equally sensitive to Model 1 and

Model 2, as model size (defined as the number of observed variables in the model) should

generally not affect the behavior of a fit index (e.g., Fan and Sivo 2007; Kenny and

McCoach 2003). These two conditions will be separately evaluated in the simulation study.

3.3 Estimation methods

To estimate the target SEM models four alternative methods were considered in this study,

namely robust RULS, robust RDWLS, robust maximum likelihood (RML), and standard

maximum likelihood (ML). The three robust estimation procedures, RULS, RDWLS, and

RML, are described in details in Yang-Wallentin et al. (2010). Overall, the robust methods

are known to provide more accurate and less variable parameter estimates, as well as more

precise standard errors and better coverage rates than standard ML and WLS (Forero et al.

2009; Yang-Wallentin et al. 2010). Robust estimation procedures are particularly relevant

for our study as faking good perturbations usually entails skewed ordinal data and robust

estimation procedures are known to be less sensitive to skewed data as compared to

standard maximum likelihood approaches. Finally, WLS was not considered in this study

as it is well known that it performs poorly unless sample size is very large and model size

is modest (Dolan 1994; Flora and Curran 2004; Muthén and Kaplan 1992).

3.4 Types of fit indices

In this study we evaluated the performances of eight well-known fit indices: goodness of fit

index (GFI), adjusted goodness of fit index (AGFI), expected cross validation index

(ECVI), standardized root-mean-square residual index (SRMR), root-mean-square error of

approximation (RMSEA), comparative fit index (CFI), nonnormed fit index (NNFI or TLI),

and normed fit index (NFI). The basic characteristics of each of the eight fit indices are

reported in Table 1. Notice that the detailed definitions and reviews of these fit indices are

easily available in the SEM literature (e.g., Browne and Cudeck 1993; Hu and Bentler

1998; Fan and Wang 1998; Schermelleh-Engel et al. 2003).

3.5 Simulation design and data conditions

In our simulation study we used a 5-point ordinal scales as they are very common in many

empirical investigations within the social and behavioral sciences. Five factors were sys-

tematically varied in a complete five-factorial design:
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a. The model type (MT), at three levels: M1, M2, and M3 (see Fig. 2);

b. The sample size (I), at three levels: 300, 600, and 1200;

c. The estimation procedure (E), at four levels: ML, RML, RULS, and RDWLS;

d. The faking good model type (FM), at three levels: uninformative faking, slight faking,

and extreme faking;

e. The percentage of replacements (K) for the endogenous variables in the SEM model,

at five levels: 0, 25, 50, 75, and 100 %.

Let t, n, e, f, and k be distinct levels of factors MT, I, E, FM and K, respectively. More-

over, let AS (number of Acceptable Solutions) be a counting variable used to control the

flow chart of the simulation design. The following procedural steps were repeated for each

of the 540 combinations of levels (t, n, e, f, k) of the simulation design:

1. Set AS ¼ 0,

2. Generate a raw-data set D� with size n according to model t. The data generation was

performed using a standard MC procedure based on multivariate normal data (e.g., Fan

et al. 2002). In particular, d�i (i ¼ 1; . . .; n) is drawn from the multivariate normal

distribution /ð0;RtÞ.
3. Discretize D� on a 5-point scale using the method described by Jöreskog and Sörbom

(1996b). In particular, the normal quantiles, �1.53, �0.49, 0.49, and 1.53, were used

as corresponding threshold values, a1; a2; a3; a4. The four quantiles were computed

using the inverse of the binomial CDF. Finally, the original continuous variable d�ij was

discretized into a symmetrically distributed ordinal variable dij on the basis of the four

threshold values. Note that the thresholds remained constant across all variables in D.
4. Fit model t using the polychoric correlation matrix of D; if the model yields an

acceptable solution (according to the estimation procedure e), then proceed to Step 5;

otherwise, go back to Step 2.

5. Sample a fake data matrix F using the conditional replacement probability distribution

with replacement parameter hF ¼ ðp ¼ k
100

; cf ; df Þ given D (see Eq. 9). The

Table 1 Fit indices

Index Reference Direction Range

GFI Jöreskog and Sörbom (1984) Large is good B1

AGFI Jöreskog and Sörbom (1984) Large is good B1

ECVI Browne and Cudeck (1993) Small is good [0

SRMR Jöreskog and Sörbom (1981) Small is good C0

Bentler (1995)

RMSEA Steiger and Lind (1980) Small is good C0

CFI Bentler (1990) Large is good [0, 1]

NNFI
(or TLI)

Bentler and Bonett (1980)
Tucker and Lewis (1973)

Large is good Can fall
outside [0, 1]

NFI Bentler and Bonett (1980) Large is good [0, 1]

GFI goodness of fit index, AGFI adjusted goodness of fit index, ECVI expected cross-validation index,
SRMR standardized root-mean-square residual, RMSEA root-mean-square error of approximation, CFI
comparative fit index, NNFI nonnormed fit index, NFI normed fit index
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coefficients cf and df refer to the shaping parameters of the faking model f, whereas p
denotes the overall probability of faking good.

6. Fit model t using the polychoric correlation matrix of the fake data set F; if the model

yields an acceptable solution (according to the estimation procedure e), then increment

AS (?1), save the fake matrix F for later analyses, and proceed to Step 7; otherwise, go

back to Step 2.

7. Stop if variable AS counts 3000 acceptable solutions; else, go to Step 2.

This algorithm was used to generate 3000 distinct matrices F for each combination of

levels (t, n, e, f, k) of the SGR simulation design. This number of replications should

guarantee reasonable estimation stability in the tail regions of the fit indices. Finally, for

each of the 3000 perturbed data matrices F the eight fit indices were separately evaluated

and the results saved for later analyses. Overall, the whole procedure generated a total of

1,620,000 = 3000 9 3 9 3 9 4 9 3 new fake matrices as well as an identical number of

fit indices results.

3.6 Data source and statistical analyses

The simulated data were generated using the sgr package for sample generation by

replacement (Lombardi and Pastore 2014) whereas model fitting and estimation were

implemented through LISREL package (Jöreskog and Sörbom 1996a). Because the fit

indices evaluated in this study were characterized by a nonzero level of skewness and

kurtosis (see Table 2 for some descriptive statistics), we decided to model the dependent

variables using a Gamma distribution (McCullagh and Nelder 1989; Dobson 2002; Wood

2006). In particular, Generalized linear models (GLM) based on the Gamma family with

inverse link function were used as main statistical analysis to evaluate how the fit indices

values were systematically influenced by the design factors. However, in order to guar-

antee a correct application of GLM models, we transformed all the indices that showed

negative values or a negative skewness into new variables with correct ranges and

skewnesses (see Table 2, last column). All the Gamma regression models included the

main factor terms (I, MT, E, and K) and all the interaction terms as independent variables.

Finally, for each fit index, we used an effect size measure defined as u ¼ 100�
ðDsource=DnullÞ with Dsource and Dnull being the deviance attributable to a target factor and

the null deviance in the GLM model, respectively. The u statistic can be understood as the

Table 2 Descriptive statistics of the fit indices

Index (y) Mean Sd Min Max Skewness Kurtosis Recoded variable (y�)

GFI 0.98 0.02 0.80 1.00 -1.84 4.62 y� ¼ 1� yþ :1

AGFI 0.97 0.03 0.72 1.00 -1.70 3.84 y� ¼ 1� yþ :1

ECVI 0.25 0.17 0.05 2.14 1.38 2.85

SRMR 0.03 0.01 0.01 0.11 1.13 1.95

RMSEA 0.02 0.02 0.00 0.15 1.32 2.25 y� ¼ yþ :1

CFI 0.99 0.05 0.00 1.00 -7.68 74.09 y� ¼ 1� yþ :1

NNFI 0.99 0.06 -0.21 2.86 -5.80 56.59 y� ¼ 1� yþ maxðyÞ
NFI 0.95 0.07 0.01 1.00 -3.73 19.35 y� ¼ 1� yþ :1

The last column reports the recoding equation for the negative skewed indices
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percentage of deviance explained in a dependent variable attributable to a factor in the

GLM model.

4 Results

Tables 3 and4 report themeasuresoffit for theGammaGLMmodelsand theportionof deviance

u explained in a fit index attributable to the design factors and their interactions, respectively.

We recall that, an ideal fit index should be sensitive to fake perturbations and faking good

model type but should not be sensitive to other irrelevant factors, such as model types (in

particular model size: M1 vs. M2) and sample size conditions. More specifically, we would

expect that a large proportion of devianceu in a fit index would be attributable to the relevant

factors K and FM, and to the difference betweenM1 versusM3. By contrast, the proportion of

deviance in a model fit index attributable to I and MT (in particular M1 vs. M2) should be

minimal. Finally, we also expect that the fit indices would be sensitive to the estimation

procedure particularly when a fake data set shows strong asymmetry and kurtosis (Flora and

Curran 2004; Forero et al. 2009; Yang-Wallentin et al. 2010). In this latter scenario RML,

RULS and RDWLSmight represent more robust estimation procedures that are less sensitive

to the fake perturbed data. Table 4 suggests that, for the conditions in this study, the fit indices

exhibited different behaviors. Half of the fit indices (GFI, AGFI, ECVI, and SRMR) showed

undesirable high sensitivity to sample size conditions. The other half (RMSEA, CFI, NNFI,

and NFI) was clearly less sensitive to sample size with proportion of deviance attributable to

factor I being about 12 % or lower. Overall this result indicates that the values of all the fit

indices but NNFI are systematically affected (to different degrees) by sample size.

As shown in Table 4, for the model type conditions, three indices (GFI, ECVI, and NFI)

showed some sensitivity to different SEM models with their proportion of deviance

attributable to MT ranging from 7.83 % (for GFI) to 22.31 % (for ECVI), with NFI being

in the middle (15.16 %). The other indices (AGFI, SRMR, RMSEA, CFI, and NNFI) were

clearly less sensitive to this factor. To provide a better understanding of the fit indices’

behaviors on the effects of different target models, we recalculated the effect size of factor

MT on the basis of the two following conditions: (a) MT recoded with two levels: M1 and

M2 (b) MT recoded with two levels: M1 and M3. Table 5 presents the results for the new

recoded factors. As discussed in the previous section, an ideal fit index should show more

sensitivity to the difference between M1 and M3 (fake proportion condition), and less

sensitivity to the difference between M1 and M2 (model size condition). Table 5 also

reports a descriptive statistic, (a – b), denoting the difference between the u value of the

recoded factor M1 versus M2 (a) and the u value of the recoded factor M1 versus M3 (b).

Note that, a good fit index should have a negative value for this statistic. A quick inspection

of Table 5 immediately reveals that the behaviors of RMSEA, CFI, NNFI, and NFI are

consistent with this expectation, whereas GFI, AGFI, ECVI, and SRMR are not. Notably,

NFI showed the largest negative difference (�17.60), whereas ECVI was the index with

the worst performance (9.03).

For the estimation procedure factor, all the indices but ECVI and SRMR were sensitive

to different estimation methods (see Table 4) with RMSEA and NFI being among the

sensitive indices the ones showing the highest (43.37 %) and the lowest (6.95 %) sensi-

tivity to factor E, respectively. Finally, for the percentage of replacement conditions and

the faking good model type, only SRMR, CFI, and NFI showed high sensitivity to

increasing amount of faking and different modulations of graded fake-good perturbations.
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Table 4 Partitioning the deviance (u) of goodness-of-fit indices

Source GFI AGFI ECVI SRMR RMSEA CFI NNFI NFI

K 2.77 3.02 0.04 14.46 0.12 8.11 2.05 16.24

I 24.89 27.75 66.36 54.38 7.04 3.21 0.63 12.12

MT 7.83 3.36 22.31 2.88 0.75 3.73 0.78 15.16

E 35.45 38.69 2.52 0.33 43.37 27.18 14.75 6.95

FM 2.86 3.07 0.08 9.03 0.20 10.93 2.66 23.45

K by I 0.26 0.18 0.02 1.22 0.02 0.56 0.20 0.07

K by MT 0.53 0.41 0.00 0.24 0.08 2.05 0.75 1.98

I by MT 0.92 0.27 5.20 0.17 0.03 0.23 0.12 0.12

K by E 0.59 0.81 0.15 0.12 1.65 8.67 8.33 0.93

I by E 4.30 3.49 0.83 0.02 1.42 1.78 2.39 0.02

MT by E 4.61 4.28 0.14 0.07 1.04 2.11 2.81 0.02

K by FM 2.20 2.24 0.09 2.75 0.23 4.46 2.36 2.57

I by FM 0.22 0.14 0.03 0.78 0.00 0.34 0.20 0.24

MT by FM 0.46 0.36 0.00 0.14 0.07 2.12 1.14 3.28

E by FM 0.47 0.58 0.14 0.04 1.23 6.46 11.26 0.49

K by I by MT 0.04 0.02 0.00 0.03 0.01 0.02 0.11 0.03

K by I by E 0.13 0.16 0.05 0.01 0.04 0.06 1.11 0.05

K by MT by E 0.22 0.21 0.01 0.00 0.05 0.84 2.55 0.01

I by MT by E 0.58 0.44 0.04 0.00 0.03 0.02 0.32 0.07

K by I by FM 0.14 0.07 0.03 0.24 0.00 0.05 0.15 0.19

K by MT by FM 0.22 0.14 0.00 0.01 0.03 0.39 0.89 0.29

I by MT by FM 0.03 0.02 0.00 0.02 0.02 0.05 0.20 0.05

K by E by FM 0.31 0.30 0.14 0.00 1.05 1.90 8.95 0.10

I by E by FM 0.08 0.09 0.05 0.00 0.03 0.07 1.32 0.03

MT by E by FM 0.17 0.15 0.01 0.00 0.06 0.80 3.56 0.01

K by I by MT by E 0.03 0.02 0.01 0.00 0.00 0.02 0.27 0.02

K by I by MT by FM 0.01 0.00 0.00 0.00 0.01 0.04 0.13 0.06

K by I by E by FM 0.03 0.02 0.04 0.00 0.02 0.05 0.88 0.01

K by MT by E by FM 0.05 0.04 0.01 0.00 0.04 0.17 2.82 0.01

I by MT by E by FM 0.02 0.02 0.00 0.00 0.00 0.01 0.36 0.01

K by I by MT by E by FM 0.00 0.00 0.00 0.00 0.01 0.05 0.25 0.01

Table 5 Deviance (u) of goodness-of-fit indices for the MT recoded factors

Source MT GFI AGFI ECVI SRMR RMSEA CFI NNFI NFI

(a) M1 versus M2 13.19 5.86 28.73 3.13 0.21 0.22 0.12 0.87

(b) M1 versus M3 4.85 1.75 19.70 0.01 0.34 4.71 0.57 18.47

(a – b) 8.34 4.11 9.03 3.12 -0.13 -4.49 -0.45 -17.60

(a – b) indicates the difference between the u value of the recoded factor M1 versus M2 and the u value of
the recoded factor M1 versus M3. A good fit index must show a negative value for (a – b)
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In particular, in SRMR, CFI, and NFI the proportion of deviance attributable to K was

about 14.46, 8.11, and 16.24 %, respectively. Similarly for the three indices (considered in

same order as for factor K) the proportion of deviance attributable to FM was (considering

the same order listed earlier) about 9.03, 10.93, and 23.45 %, respectively. The other five

indices, GFI, AGFI, ECVI, RMSEA, and NNFI were less sensitive to data replacements

and fake-good modulations. In particular, factor K and factor FM accounted for a very low

amount of variation in ECVI (resp. only 0.04 and 0.08 %) and RMSEA (resp. only 0.12

and 0.20 %). CFI and NNFI showed also some interesting interaction effects. In particular,

in CFI we observed two interaction effects with a proportion of deviance larger than 5 %,

namely K by E (8.67 %) and E by FM (6.46 %). For NNFI there were three interactions

above this threshold, namely K by E (8.33 %), E by FM (11.26 %), and the triple inter-

action K by E by FM (8.95 %).

On the basis of the results presented in Tables 4 and 5, we would tentatively consider

CFI and NFI as having the more correct behavior expected from a model fit index.

However, to better explore the behaviors of these two best performing fit indices, in what

follows we will show their functional patterns and compare this new graphical analysis

with the results reported in this section.

4.1 Graphical analysis

Because of space limitations, we preferred to show the results for the second model M2

only (see Fig. 2). However, this is not a serious loss as the information reported in Table 5

about factor MT is sufficient to discriminate between the performances of the two indices.

Figure 3 shows the observed means of CFI as a function of factors K, MF, E, and I,
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Fig. 3 Means of CFI as a function of percentage of replacements, models of faking, estimation method, and
sample size. Segments represent 95 % interquantile intervals
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respectively. Segments represent 95 % interquantile intervals. Somehow surprisingly, the

CFI index resulted totally unsensitive to the design factors except for a minority of design

conditions corresponding to the combinations (ML, extreme faking) and (ML, uniform

faking). In particular, for these two conditions, CFI showed a sample size effect with the

I = 1200 condition yielding an overall better performance for CFI. Moreover, in the ML

condition the CFI mean decreased by increasing levels of replacements, that is to say, it

degraded with larger amounts of fake perturbations (K). As expected, the effect was larger

in the extreme faking condition, whereas it was practically absent in the slight faking

condition. Finally, the uniform faking condition showed a moderate effect for factor K.

Figure 4 presents the patterns of NFI. We recall that this index showed the largest

sensitivity to fake perturbation (see Table 4). This result was confirmed also in the

graphical analysis. In particular, the NFI mean decreased by increasing levels of

replacements (K), that is to say, it degraded with larger amounts of fake perturbations. This

result was evident in all the design conditions except for those characterized by the slight

faking perturbations. Notably, unlike CFI, the NFI index was sensitive to factors K and MF

also in the robust estimation conditions (RML, RULS, and RDWLS). However, the largest

impact of faking was observed for the ML estimation procedure which seemed to boost the

sensitivity of NFI to fake perturbations. Like for CFI, also the NFI index showed a sample

size effect with the I = 1200 reflecting the best performance for NFI.

4.2 Further graphical analysis

Under misspecified conditions in real data a fit index value simply reflects how well a

model is able to reconstruct the relationships in the observed data, which are not
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necessarily those that are actually represented in the true unknown population. This

issue becomes even more relevant when considering perturbed data. The crucial

question now becomes: if the data contained fake observations, would a model be able

to correctly reconstruct the relations represented in the uncorrupted true population? In

an attempt to answer this question, we decided to evaluate to what extend the four

estimation procedures were able to reconstruct the true relationships in the population

as measured by the population correlation matrix. This further analysis is important, as

it will help us in better understanding the performances of the two best fit indices (CFI

and NFI).

To reach this objective, we studied the difference between the original correlation

matrix R ¼ RðhSÞ implied by model M2 under the parameters assignment in the original

generative phase (see the target models section described earlier in this article) and the

reconstructed correlation matrix R̂ obtained by fitting the same model to the fake data sets

F. We examined the average relative bias (ARB) across all study conditions. We used the

following estimate of correlation bias:

ARB ¼ 200

T½NðN � 1Þ�
X

t

XN

l¼2

Xl�1

s¼1

r̂tls � rls

rls

� �
ð10Þ

with r̂tls and rls being the (l, s) element of the reconstructed (N � N) correlation matrix R̂
t

in the tth sample replicate (t ¼ 1; . . .; T) and the (l, s) element of the true (N � N) cor-

relation matrix R, respectively. A large absolute value of ARB indicates a large discrep-

ancy between the population correlation matrix and the reconstructed correlation matrix.

Figure 5 shows ARB as a function of factors K, MF, E, and I, respectively. Clearly, ARB
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was sensitive to both increasing levels of fake perturbations (K) and fake model type (FM).

As expected, the largest discrepancy between the two correlation matrices was observed

for the extreme faking condition. Notably, the behavior of ARB was not affected by factor

E and factor I. In particular, for factor E all the four estimation procedures were equally

affected by fake data in the reconstruction of the correlation matrix. The results were

replicated also with the structural models M1 and M3. Therefore, the results seemed very

consistent across different sample size and model type conditions.

Taken together the results of the three analyses lead us to conclude that NFI shows the

more ideal behavior expected from a model fit index as it actually decreases its perfor-

mance under fake data conditions irrespective of the estimation procedure adopted.

However, as expected the fake effects on NFI were more evident for the standard ML

estimation procedure. By contrast, CFI seemed to artificially boost its performance espe-

cially in the robust estimation conditions.

4.3 A qualitative criterion for fake data analysis

The main result of the new SGR simulation study can be summarized as follows. Under

robust estimation conditions all the studied fit indices but NFI were substantially unsen-

sitive to any level and type of fake perturbation on the original datasets. In particular, only

NFI resulted sufficiently sensitive to fake perturbations in the data especially when

uninformative and extreme faking conditions were considered. In what follows we describe

a simple qualitative criterion, called the faking criterion (FC), that can be used to check if

the results of a factorial analysis have been potentially corrupted by fake data. We assume

that the model has been fitted using a robust estimation procedure and that the set of fit-

indices used to evaluate the model includes also the NFI and CFI indices. The criterion acts

by classifying the conjunctive combination of results of the two indices into two com-

plementary classes: (a) positive evidence for faking (b) negative evidence for faking. The

FC criterion is described in Fig. 6. The graphical representation illustrates the four distinct

conditions resulting from the cross-combination of results between the two fit indices. Note

that the second combination (first row, second column) indicates some evidence about the

hypothesis of fake observations in the data: the most sensitive index (NFI) suggests model

rejection whereas the second fit index (CFI), which is unsensitive to fake observations,

endorses model acceptance. This is a diverging result which reflects a positive case for

faking. By contrast, the remaining tree conditions indicate empirical results that show little

evidence for faking. Figure 7 shows the criterion as a function of factors K, MF, E, and I,

Fig. 6 FC criterion. The four conditions resulting from a cross-combination of NFI and CFI results as a
function of the model acceptance threshold 0.95 (e.g., Hu and Bentler 1998)
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respectively. Clearly, FC was sensitive to both increasing levels of fake perturbations

(K) and fake model type (FM). As expected, the largest effect was observed for the

extreme faking condition. It is worthwhile to note that when the criterion provides evi-

dence for faking, then the difference between the observed value of CFI and the observed

value of NFI can be understood as the strength of this evidence: the larger the difference

the stronger is the evidence for faking.

5 Discussion

This study extended the findings of a recent SGR simulation study (Lombardi and Pastore

2012) to evaluate the sensitivity of fit indices to fake perturbed data. The new SGR

simulation study sought to investigate the relative performance of 8 commonly used SEM-

based fit indices to fake perturbations of ordinal data in three different SEM models using

the SGR approach. We manipulated a comprehensive set of factors that could influence

their performance, resulting in 540 different conditions. The conditions were chosen to

highlight the differences among the fit indices, as well as to cover a wide variety of

conditions. Our results demonstrate empirically that the incremental fit index NFI was

clearly more sensitive to fake perturbations thus confirming the findings reported in a

previous paper by Lombardi and Pastore (2012). This result was evident in all the simu-

lation design conditions except for those characterized by slight faking levels of pertur-

bations. Interestingly, unlike CFI, the NFI index showed a significant sensitivity to factors

K and MF not only in the ML condition but also in the other robust estimation conditions

(RML, RULS, and RDWLS).
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Ideally, we expect that a fit index should be sensitive to the factors associated with fake

perturbations. However, the behavior of CFI seemed not consistent with this expectation at

least when robust estimation methods were considered in our simulation study. In par-

ticular, if a model is subjected to two different levels of fake perturbation in the data, CFI

would lead us to the same conclusions about model fit, regardless of which quantity of

perturbation is under consideration. Of course, this would still be a desirable property if the

robust estimation procedure really reconstructed the original (fake-uncorrupted) true cor-

relations in the population. Under this hypothesis, the lack of sensitivity of CFI to fake

perturbations would simply reflect the robustness of RML, RULS, and RDWLS to

potential large levels of skewness in the fake perturbed data (see Table 6). However, under

misspecified conditions a fit index value simply reflects how well the model is able to

reconstruct the relationships in the observed data, which are not necessarily those that are

actually represented in the true population. The graphical analysis of the ARB statistic

clearly showed that the correlation bias was largely affected by fake perturbations with the

largest effect being observed for the extreme faking condition. By contrast, ARB was not

affected by sample size and type of estimation conditions. Unlike the CFI index, NFI was

in general more in line with the ARB patterns.

By taking into account the results of our simulation study we proposed a new qualitative

criterion (FC) which acts as a safety warning for faking data. We recommend including

this criterion in the ideal set of model fit indices to evaluate the effect of potential fake

observations in the data. However, it is natural to ask why the FC criterion seemed to work

when applied to fake data. In particular, why do NFI and CFI show different behaviors to

fake data at least when robust estimation procedures are considered? In what follows, we

provide a tentative answer to this relevant question. To begin, we first notice that both NFI

and CFI are incremental fit indices that are based on a transformation of the v2 values of

the target model and the baseline model (or null model), respectively. The baseline model

is a model that specifies that all measured variables are uncorrelated. In particular, NFI

indicates the improvement in fit realized by moving from the baseline model to the target

model

NFI ¼
v2base � v2target

v2base
:

By contrast, CFI is an incremental fit index based on the non-centrality parameter (Bentler

1990; McDonald and Marsh 1990). The non-centrality parameter is calculated by sub-

stracting the df of the model from its v2 value. CFI takes the following form

CFI ¼
ðv2base � dfbaseÞ � ðv2target � dftargetÞ

v2base � dfbase
:

Table 6 Expected skewness in
the fake perturbed data as a
function percentage of replace-
ments (K) and faking models
(FM)

K by FM (%) Uninformative Slight Extreme

0 0.000 0.000 0.000

25 -0.141 -0.119 -0.188

50 -0.501 -0.346 -0.710

75 -0.956 -0.581 -1.508

100 -1.229 -0.592 -2.397
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and allows for an adjustment that takes into account model parsimony. However, in models

for which v2 is larger than the corresponding df, which is likely to represent the great

majority of models tested in empirical researches, the NFI tends to be more conservative

than CFI. Figure 8 exemplifies this situation. In the graphical representation we assume

that the proportion between v2target and v2base is kept constant to a fixed value 0.2, that is to

say, the Chi-square value of the baseline (null) model is five times larger than that of the

target model. In this scenario, the NFI function takes a constant value (0.8), whereas CFI is

inversely related to the original baseline v2base value. Because the CFI function always

dominates the NFI function, the NFI index turns out to be more conservative than CFI. In

general, this dominance pattern does not change if we consider different proportions

between the target and baseline models such that v2 [ df . This may implicitly explain why

the FC criterion distinguished between fake data and honest data in our simulation study.

Another interesting issue regards the relationship between fake data and skewed data.

Because faking good entails some level of skewness in the data, our results seemed clearly

related to some findings about the performance of robust estimation procedures under

skewed or kurtotic ordinal data. For example, Flora and Curran (2004) evaluated in a

Monte Carlo simulation study the overall bias in parameter estimation for a factorial model

(similar to our model M2) fitted on simulated five-point rating data as a function of sample

size and level of skewness (low: 0.75 vs. moderate: 1.25). The authors showed that in all

conditions the overall bias in parameter estimation was less than 5 % when a robust WLS

was used to estimate the parameters. Similarly, in an extensive simulation study Yang-

Wallentin et al. (2010) showed as the shape of the distribution categories for different kind

of ordinal data did not seem to make any difference for the average relative bias in

parameter estimates and that, in particular, all the estimation methods except for WLS had

very similar good performances.

Apparently, these findings seem to be in contrast with what we observed in our study

where correlation bias as measured by ARB was largely affected by fake corrupted skewed

data. However, because the dependent variables analyzed in these studies were clearly

different (parameter estimate relative bias vs. correlation bias) a direct comparison

between the two sets of results is difficult and delicate. All the same, it is interesting to note

that when more extreme levels of data skewness ([2) were considered in simulation

studies (e.g., Forero et al. 2009), the overall bias was positive and larger than 10 % also for

robust methods (e.g., DWLS). In general, these results demonstrated that the pattern of

relative biases, both from the estimates and the standard errors, depended on a complex

Chi-Square base (null) model
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Fig. 8 CFI and NFI values as a

function of v2base. The proportion

between v2target and v2base is kept
constant to a fixed value 0.2. The
degrees of freedom of the two
models are the ones computed for
Model 2 (target model: 88;
baseline model: 105). Continuous
(resp. dashed) line represents the
CFI (resp. NFI) function
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pattern of high-order interactions which had a slightly different effect on each estimation

method. In sum, we believe that a deeper understanding of the interaction between the

impact of fake data on parameter estimate relative bias or structural/correlational bias is

necessary and worthy of further investigation in the study of factorial models for ordinal

data.

5.1 Limitations and directions for future study

As with other Monte Carlo studies, our investigation involves simplifying decisions that

result in lower external validity such as, for example, homogeneous loadings and the

assumption that restricts the conditional replacement distribution to satisfy the conditional

independence assumption. Unfortunately, this restriction clearly limits the range of

empirical faking processes that can be mimicked by the current SGR simulation procedure.

Therefore, although encouraging, the promise of this approach should be examined across

more varied conditions. We acknowledge that more work still needs to be done.
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Jöreskog, K., Sörbom, D.: PRELIS 2: user’s Reference Guide. Scientific Software International Inc, Lin-

colnwood (1996b)
Kenny, D.A., McCoach, D.B.: Effect of the number of variables on measures of fit in structural equation

modeling. Struct. Equ. Model. 10, 333–351 (2003)
Lee, S.-Y., Poon, W.-Y., Bentler, P.M.: Full maximum likelihood analysis of structural equation models

with polytomous variables. Stat. Probab. Lett. 9, 91–97 (1990)
Leite, W.L., Cooper, L.A.: Detecting social desiderability bias using factor mixture models. Multivar.

Behav. Res. 45, 271–293 (2010)
Lombardi, L., Pastore, M.: Sensitivity of fit indices to fake perturbation of ordinal data: a sample by

replacement approach. Multivar. Behav. Res. 47, 519–546 (2012)
Lombardi, L., Pastore, M.: sgr: a package for simulating conditional fake ordinal data. R. J. 6, 164–177

(2014)
MacCann, C., Ziegler, M., Roberts, R.D.: Faking in personality assessment: Reflections and recommen-

dations. New Perspect. Faking Personal. Assess., 309–329 (2011)
Marshall, E.: Scientific misconduct. How prevalent is fraud? That’s a million-dollar question. Science.

290(5497), 1662–1663 (2000)
McCullagh, P., Nelder, J.A.: Generalized Linear Models. Chapman and Hall, London (1989)
McDonald, R.P., Marsh, H.W.: Choosing a multivariate model: Noncentrality and goodness of fit. Psychol.

Bull. 107, 247–255 (1990)
McFarland, L.A., Ryan, A.M.: Variance in faking across noncognitive measures. J. Appl. Psychol. 85,

812–821 (2000)
Muthén, B.: A general structural equation model with dichotomous, ordered categorical and continuous

latent variables indicators. Psychometrika 49, 115–132 (1984)
Muthén, B., Kaplan, D.: A comparison of some methodologies for the factor analysis of non-normal Likert

variables: a note on the size of the model. Br. J. Math. Stat. Psychol. 45, 19–30 (1992)
Pastore, M., Lombardi, L.: The impact of faking on Cronbach’s alpha for dichotomous and ordered rating

scores. Qual. & Quant. 48, 1191–1211 (2014)
Paulhus, D.L.: Two-component models of socially desirable responding. J. Personal. Soc. Psychol. 46,

598–609 (1984)
Paulhus, D.L.: Measurement and control of response bias. In: Robinson, J.P., Shaver, P.R., Wrightsman, L.S.

(eds.) Measures of Personality and Socialpsychological Attitudes, pp. 17–59. Academic Press, New
York (1991)

Paxton, P., Curran, P.J., Bollen, K.A., Kirby, J., Chen, F.: Monte Carlo experiments: design and imple-
mentation. Struct. Equ. Model. 8, 287–312 (2001)

Pek, J., MacCallum, R.C.: Sensitivity analysis in structural equation models: cases and their influence.
Multivar. Behav. Res. 46, 202–228 (2011)

2674 L. Lombardi, M. Pastore

123



Ridgon, E.E., Ferguson, C.E.: The performance of the polychoric correlation coefficient and selected fitting
functions in confirmatory factor analysis with ordinal data. J. Mark. Res. 28, 491–497 (1991)

Rosse, J.G., Stecher, M.D., Miller, J.L., Levin, R.A.: The impact of response distortion on preemployment
personality testing and hiring decisions. J. Appl. Psychol. 83(4), 634–644 (1998)

Schermelleh-Engel, K., Moosbrugger, H., Mller, H.: Evaluating the fit of structural equation models: tests of
significance and descriptive goodness- of-fit measures. Methods Psychol. Res. Online 8(2), 23–74
(2003)

Steiger, J.H., Lind, J.C.: Statistically based tests for the number of common factors. Paper presented at the
annual meeting of the Psychometric Society, Iowa City, IA (1980, May)

Tucker, L.R., Lewis, C.: A reliability coefficient for maximum likelihood factor analysis. Psychometrika 38,
1–10 (1973)

Van der Geest, S., Sarkodie, S.: The fake patient: a research experiment in a Ghanaian hospital. Soc. Sci. &
Med. 47, 1373–1381 (1998)

Wood, S.N.: Generalized Additive Models. Taylor and Francis Group, Boca Raton (2006)
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