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via Venezia, 8, I-35131 Padova, Italy
(E-mail: massimo.nucci@unipd.it)

4 Dipartimento di Filosofia, Sociologia, Pedagogia e Psicologia Applicata,
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Abstract. In many psychological inventories (i.e., personnel selection surveys and di-
agnostic tests) the collected samples often include fraudulent records. This confronts
the researcher with the crucial problem of biases yielded by the usage of standard
statistical models. In this paper we generalize a recent probabilistic perturbation
procedure, called SGR - Sample Generation by Replacements - (Lombardi & Pas-
tore[4]), to simulate fake data with correlational structures. To mimic these more
complex faking data we proposed a novel extension of the SGR conditional replace-
ment distribution which is based on a discrete version of the truncated multivariate
normal distribution. We also applied the new procedure to real behavioral data on
the role of perceived affective self-efficacy in social contexts.
Keywords: Sample Generation by Replacement, Fake-good data, Truncated multi-
variate normal distribution.

Many self-report measures of attitudes, beliefs, personality, and pathology in-
clude items that can be easily manipulated by respondents. For example, an
individual may deliberately attempt to manipulate or distort responses to per-
sonality inventories and attitude tests to create positive impressions (e.g., Paul-
hus[7]; Zickar & Robie[8]). In other circumstances, some individuals may tend
to malinger responses on a symptom checklist to simulate grossly exaggerated
physical or psychological symptoms in order to reach specific goals such as,
for example, obtaining financial compensation, avoiding being charged with a
crime, avoiding military duty, or obtaining drugs (e.g., Hall & Hall[2]).

Sample Generation by Replacement (SGR) is a recent data simulation pro-
cedure to artificially generate samples of fake ordinal data (Lombardi & Pa-
store[4]). SGR is based on a two-stage sampling algorithm characterized by
two distinct generative models: the model representing the process that gener-
ates the data prior to any fake perturbation (data generation process) and the
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model representing the faking process to perturb the data (data replacement
process). This approach has been recently applied to evaluate the impact of
hypothetical faking good manipulations in ordinal data on the performances of
a set of widely known and commonly used stand-alone SEM-based fit indices
(Lombardi & Pastore[4]). SGR has also been used to study the sensitivity
of reliability indices to fake perturbations in dichotomous and ordered data
generated by factorial models (Pastore & Lombardi[6]).

Up to now the SGR approach has been limited to the modeling of condi-
tionally independent fake data. In this contribution, we propose a novel gener-
alization of the conditional replacement distribution that accounts for possible
correlated structures in the simulated fake data.

1 Main features of the SGR approach

1.1 Data generation process

We think of the original data as being represented by an n × m matrix D,
that is to say, n observations (e.g., participants) each containing m elements
(e.g., participant’s responses). We assume that entry dij of D (i = 1, . . . , n;j =
1, . . . , m) takes values on a small ordinal range 1, 2, . . . , Q. In particular, let
di be the (1 × m) array of D denoting the simulated pattern of responses of
participant i. The response pattern di is a multidimensional ordinal random
variable with probability distribution p(di|θ), where θ indicates the vector of
parameters of the generative probabilistic model of the data. Moreover, we
assume that the simulated response patterns are independent and identically
distributed (i.i.d.) observations.

1.2 Data replacement process

The basic principle of the SGR approach is to generate a new n × m ordinal
data matrix F, called the fake data matrix of D, by manipulating each ele-
ment dij in D according to a replacement probability distribution. Let fi be
the (1 ×m) array of F denoting the hypothetical pattern of fake responses of
participant i. The fake response pattern fi is a multidimensional ordinal ran-
dom variable with conditional replacement probability distribution p(fi|di, θF )
where θF indicates the vector of parameters of the probabilistic faking model.
In general, θF represents hypothetical a priori knowledge about the distribu-
tion of faking (e.g., the chance of observing a fake observation in the data)
or empirically based knowledge about the process of faking (e.g., the direction
of faking - fake good vs. fake bad -). In the SGR framework the replace-
ment distribution p(fi|di, θF ) is restricted to satisfy a conditional independence
assumption (see Lombardi & Pastore[4]; Pastore & Lombardi[6]). More pre-
cisely, in the replacement distribution each fake response fij only depends on
the corresponding data observation dij and the model parameter θF . There-
fore, because the patterns of fake responses are also i.i.d. observations, the
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simulated data array (D,F) is drawn from the joint probability distribution

p(D,F|θ, θF ) =

n�

i=1

p(di|θ)p(fi|di, θF ) (1)

=

n�

i=1

p(di|θ)

m�

j=1

p(fij |dij , θF ) (2)

By repeatedly sampling data from the two generative models we can simulate
the so called fake data sample (FDS). We can then study the distribution of
some relevant statistics computed on this FDS.

1.3 The problem of the independence assumption

We recall that the SGR simulation procedure generates fake perturbations that
are restricted to satisfy the conditional independence assumption. Unfortu-
nately, this restriction clearly limits the range of empirical faking processes that
can be mimicked by the SGR simulation procedure. In particular, because the
replacement distribution acts as a perturbation process for the original data,
the resulting fake data will always show correlations that are (on average)
weaker than the ones observed for the original data, thus showing a sort of
residual correlation effect. However, it is known that some empirical contexts
may require different model assumptions about the faking process that cannot
be captured by this simple framework. For example, different modulations of
graded faking such as slight faking and extreme faking (e.g., Zickar & Robie[8])
are not consistent with the simple independence hypothesis.

To fill this gap, in this contribution we propose a novel conditional re-
placement distribution that allows to modulate different levels of correlational
patterns in the simulated fake data. Because our new proposal is based on
a discrete version of the truncated multivariate normal distribution, in what
follows we present some relevant properties of this important distribution func-
tion before introducing the new perturbation model that does not hinge on the
independence assumption.

2 A SGR framework for correlated fake-good data

The SGR approach offers an elegant way to simulate faking good scenarios. In
general, faking good can be conceptualized as an individual’s deliberate attempt
to manipulate or distort responses to create a positive impression (Paulhus[7];
Zickar & Robie[8]). Notice that, the faking good (as well as the faking bad)
scenario always entails a conditional replacement model in which the condi-
tioning is a function of response polarity. This model represents a perturbation
context in which responses are exclusively subject to positive feigning:

fij ≥ dij ; i = 1, . . . , n; j = 1, . . . , m
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2.1 The truncated multivariate replacement distribution

As a kernel for the conditional replacement distribution we consider the trun-
cated multivariate normal distribution TN(µ,Σ,a,b) (e.g., Horrace[3]). This
distribution can be expressed as

f(x|µ,Σ,a,b) =
exp

�
− 1

2 (x− µ)TΣ−1(x− µ)
�

� b

a
exp

�
− 1

2 (x− µ)TΣ−1(x− µ)
�

dx
(3)

for a ≤ x ≤ b and 0 otherwise. The (1×m) vectors a and b are the lower and
upper truncation points (aj < bj ; j = 1, . . . ,m) for the multivariate normal
distribution with m dimensions. Finally, µ and Σ are the location parameter
vector and the covariance matrix of the (not truncated) multivariate normal
distribution.

Now, let fi = (k1, . . . , km) and di = (h1, . . . , hm) be the replaced values and
the original values for the ith simulated observation, respectively. According
to the Underlying Variable Approach (UVA; Muthén[5]) we can set

p(fi|di, θF ) =

�� αk1

αk1−1
· · ·

� αkm

αkm−1
f(x|0,Σ,ai,bi)dx, ∀j : 1 ≤ hj ≤ kj ≤ Q

0, ∃j : kj < hj

In the replacement distribution 0 is the 1 ×m array of zeros representing the
location parameter (that is to say µ = 0), whereas the pair (αkj−1, αkj ) are
the thresholds corresponding to the discrete value kj (j = 1, . . . , m). Following
the UVA framework we assume that there exists a continuous data matrix F∗

underlying the fake ordinal data matrix F. The connection between the ordinal
variable fij and the underlying variable f∗ij in F∗ is given by

fij = kj ⇔ αkj−1 < f∗ij < αkj ; i = 1, . . . , n; j = 1, . . . , m.

Recall that to represent an ordinal item with Q categories we need Q + 1
thresholds. Finally, the bounds ai = (ai

1, . . . , a
i
m) and bi = (bi

1, . . . , b
i
m) are set

to

ai
j = αhj−1 bi

j = +∞, j = 1, . . . , m

where we recall that (αhj−1, αhj ) is the pair of thresholds corresponding to the
value hj for the original variable dij in di. Figure 1 shows an example for a one
dimensional case. In sum, the parameter array for the faking model is given by

θF = (α,Σ).

with α being the m× (Q− 1) threshold matrix.

2.2 Some relevant properties of the new replacement distribution

It is important to point out two interesting properties of the novel replacement
distribution for correlated fake data.
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Fig. 1. Example of a truncated normal distribution (one dimensional) with d = 2
and f = 3. The mean µ of the distribution is 0, the bounds a and b are α1 and +∞,
respectively. The conditional probability p(3|2, θF ) is the shaded area between α2

and α3.

The first property is related to the probability of replacement π. According
to the truncated multivariate replacement distribution the value 1 − πi of the
conditional probability of non-replacement

fi = di = (h1, . . . , hm)

is equivalent to

1− πi =

� αh1

αh1−1

· · ·

� αhm

αhm−1

f(x|0,Σ,ai,bi)dx (4)

and consequently, the probability of replacement πi is

πi = 1−

�� αh1

αh1−1

· · ·

� αhm

αhm−1

f(x|0,Σ,ai,bi)dx

�

(5)

Note that in the original model of replacement (Lombardi & Pastore[6]) the
probability of replacement π was an explicit parameter in the replacement
distribution, whereas in this new proposal π is an implicit parameter that can
be derived by taking the average across the n distincts πi:

π̄ =
1

n

n�

i=1

πi.

The second property is related to the correlational structure of the simu-
lated fake data set F. Unlike the standard model of replacement, in the new
configuration we can directly represent correlations between the replaced val-
ues for the m ordinal variables. In particular, the correlation matrix Rf of
F can be modulated by the covariance matrix Σ in the replacement model.
Note, however, that Σ is the covariance matrix of the original (not truncated)
multivariate normal distribution. In general, the computation of the first and
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second moments is not trivial for the truncated case, since they are obviously
not the same as µ and Σ from the parametrization of TN(0,Σ,a,b). In par-
ticular, it can be seen that truncation can significantly reduce the variance
and change the covariance between variables. In the next section we will show
some examples of how the resulting correlation matrix Rf can be affected from
the interaction between different modulations of faking (represented by differ-
ent configurations of threshold values α) and the structure of the covariance
matrix Σ.

3 Applicative example

The new replacement distribution is illustrated using data from a question-
naire about the role of perceived affective self-efficacy in personality and social
psychology (Bandura, Caprara, Barbaranelli, Gerbino, and Pastorelli[1]). Par-
ticipants were 463 undergraduate students (389 females) at the University of
Padua (Italy). Ages ranged from 18 to 48, with a mean of 20.64 and a standard
deviation of 2.71. Data consisted of the participants’ responses to three of the
12 items of the AEP/A scale (Caprara, 2001) scored on a 4-point agree-disagree
scale (value 1 denotes that a participant totally disagrees with the statement,
whereas value 4 means total agreement with the statement). However, the 463
participants were divided into two groups. The first group (n1 = 231) received
a neutral set of instructions, whereas the second group (n2 = 232) received
ad lib faking instructions. The resulting responses were collected into two em-
pirical data matrices: De for the neutral group and Fe for the ad lib faking
group. As expected the observed responses for the ad lib faking group were af-
fected by fake good observations. More precisely, the participants deliberately
manipulated their responses using larger values of the scale to create better
impressions. This hypothesis was partially supported by the moderate ceiling
effects observed in the data (see Fig. 2). Because no additional items on so-
cial desirability was available in the AEP/A inventory, we decided to perform
an SGR analysis on the basis of two hypothetical scenarios: slight faking and
uniform faking.

3.1 Comparing faking models

An SGR analysis was used to evaluate the mimicking ability of four differ-
ent faking models with respect to the empirical fake set Fe. In particular,
because De and Fe contained responses collected from two different groups
of individuals, we decided to evaluate the simulated fake samples against the
empirical marginal means of the three items as well as against their empirical
correlations in Fe. To that end, we defined four perturbation models derived
by the combination of two factors with two levels each. The first factor de-
fined two structures for the covariance matrix in the truncated replacement
distribution: a) the identity matrix I (denoting an independent model) b) the
empirical correlation matrix of Re computed on the observed matrix Fe (rep-
resenting the correlational structure in Fe). The second factor represented
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two different options for the thresholds in the replacement distribution: a)
α1 = −0.674, α2 = 0.0, α3 = 0.674 denoting a uniform support fake-good dis-
tribution (Lombardi and Pastore[4]) b) α1 = −1.591, α2 = 1.596, α3 = 3.332
denoting a slight fake-good distribution (e.g., Zickar & Robie[8]). All the other
components (parameters’ values) were set to identical values in all the four
faking models. In particular, the original data set D in the conditional replace-
ment distribution was set equal to the empirical data set De. The latter means
that in this application we did not simulate the data D, instead we directly
used the observed data De in the replacement distribution equation. The four
faking models were then used to simulated new FDSs.

The results of the SGR analysis are shown in Figures 2,3. Figure 2 repre-
sents the simulated marginal means of the fake-good data as a function of the
two factors. The results showed that the slight faking model with mild depen-
dency was preferred to the other three models. Similarly, figure 3 shows the
simulated correlations of the fake-good data as a function of the two factors.
Like for the marginal means, also for the correlations the slight faking model
with mild dependency showed a better performance as compared to the other
three models. In other words, the ad lib faking instructions seem to be more
consistent with a mild positive impression effect that boosts the correlations
between the items.
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Fig. 2. Boxplots for the simulated marginal means of the fake-good data for the four
models. The solid line denotes the observed pattern for the marginal means in De.
The dashed line indicates the observed pattern for the marginal means in Fe. UF
= uniform support fake-good distribution, SL = slight fake-good distribution; S0 =
independent faking model, Sf = faking model with a correlational structure. a1, a2,
and a3 denote the three selected items of the AEP/A scale. The data represented in
each boxplot were derived from 500 FDSs.
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Fig. 3. Boxplots for the simulated correlations of the fake-good data for the four
models. The solid line denotes the observed correlational pattern in De. The dashed
line indicates the observed correlational pattern in Fe. UF = uniform support fake-
good distribution, SL = slight fake-good distribution; S0 = independent faking model,
Sf = faking model with a correlational structure. The variable rfjj� denotes the
correlation between item aj and item a�

j of the AEP/A scale. The data shown in
each boxplot were derived from 500 FDSs.
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