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4.1 Introduction 
 

A major problem in psychological measurements is that in some circum- 
tances there is no basis to assume that subjects are responding honestly. 
Some individuals actually tend to distort their responses in order to reach 
specific goals. For example, in personnel selection some subjects are likely 
to fake a personality questionnaire to match the ideal candidate's profile 
(positive impression management). Similarly, in the administration of 
diagnostic tests individuals often attempt to malinger posttraumatic stress 
disorder (PTSD) in order to secure financial gain and/or treatment, or to 
avoid being charged with a crime. 

Possible fake data confront the researcher with a crucial question: If data 
included fake datapoints, would the answer to the research question be 
different from what it is? Even in the clearest case -- that is, randomly fake 
data -- the answer is not necessarily obvious, as even the random perturba-
tion of data constitutes a biased information which decreases the efficiency 
of parameter estimates and weakens the accuracy of statistical results.  
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A case of particular empirical interest is the situation in which a researcher
wants to evaluate the uncertainty associated to the acceptability of a given
model as a result of propagation through the model of errors in input data.
For example, within a factorial modeling approach, we might be interested in
studying how acceptability of a target model varies as a function of different
error levels in the original data set. In that case the crucial question can be
rewritten as: If the data containedq% fake datapoints, what would the prob-
ability be that the model is still an acceptable one? A fake-scenario analysis
may be considered as a supplementary analysis a researcher can run in order
to broaden the sources of information she/he is interested in. However it looks
clear that the usefulness of this approach becomes evident only if a researcher
feels pretty confident about the consistency of the target model. That is to say,
we need a model that adequately reproduces the underlying process of interest.

The issue of perturbations in real data has been substantially neglected in
evaluating the uncertainty of model acceptability in covariance structure mod-
eling. In this paper we attempt to contribute to the modeling of methods of
treating possible fake data in structural equation models. In particular, our
study examines the uncertainty associated with the acceptability of a simple
well fitting factorial model. A new approach, called SGR (Sample Generation
by Replacements), is developed in order to provide a perturbation model and a
sampling procedure to generate a structured collection of perturbations.

Section 2 of this paper will first outline the basic principles of the new
replacement approach. Section 3 will then present an illustrative application
of the SGR approach to a simple factorial model. Finally, Section 4 will dis-
cuss the relation of the SGR method with Monte Carlo simulation studies. At
the end of the section some possible extensions of the SGR approach are also
outlined.

7.2 The Method of Replacements

SGR is a combinatorial method that can be applied to discrete data with a
restricted number of values (e.g. Likert scale) and consists of two different
components:

1 a perturbation model,

2 a sampling procedure to generate perturbed samples from a given real
data set.
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7.2.1 Basic Elements

Perturbed data matrices In many social and psychological surveys the re-
sulted dataset often includes incomplete records (missing data) and/or fake
records (fake data). In particular, as regards the fake-data problem, we think of
the full dataset as being represented by ann×m matrixD (that is,n observa-
tions, each containingm elements), of which a certain portionDf is actually
fake-data. The fake-portionDf of D together with the uncorrupted portionDu

of D, constitutes the full data set, that is to sayD = Df ∪Du. The exact fake-
portionDf of D is assumed to be an unknown parameter and only the number
% of fake data points inD is supposed to be known. The general idea is the
following: in order to analyze the data and provide an uncertainty analysis of
some statistic of interest we replace some portionsD1, . . . ,Ds of D, each of
which contains exactly% elements, with new componentsXr

1, . . . ,X
r
s in such

a way that for allh = 1, . . . , s, all the corresponding elements inXr
h andDh

are different. In the SGR approach these new components are generated from
an appropriate population, and, therefore, the complete datasetsX1, . . . ,Xs

(with Xh = Xr
h ∪Du

h; h = 1, . . . , s), are analyzed. We call the data matrices
Xh andXr

h thehth-perturbed matrix ofD and thehth-replaced portion ofD,
respectively.

Uncertainty evaluation LetM be a well fitting statistical model for the
original data setD (for simplicity the model is assumed to be consistent). More
precisely, it is assumed that, conditional uponD,M satisfies some opportune
model acceptability criterionφM. We may think ofφM as a mapping from
the sample spaceXn×m into the Boolean set{0, 1}, whereφM(X) = 1 de-
notes thatM is an acceptable model forX. For example, within the structural
equation modeling approach, we may think ofM andφM as a confirmatory
factorial model and as a conjuctive combination of g.o.f. (goodness-of-fit) con-
straints, respectively. The main goal of a replacement analysis is the evaluation
of φM under the perturbed sample spaceX ∗n×m = {Xh : h = 1, . . . , s} ⊂
Xn×m. This idea is summarized in Figure 4.1

In the next section we will introduce a new simple replacement procedure
that comes down to the most elementary model instantiation of the SGR ap-
proach.
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Figure 4.1. Overall scheme of a replacement approach.

7.2.2 The SGR Model

Let us assume that the entrydij of D takes values on a possibly small set
V = {v1, v2, . . . , vk} ⊂ N. Then, the set of all the perturbed matricesX
with exactly% replacements can be derived by means of the following simple
procedure. Define the set

S%(D) = {X ∈ Xn×m : L0(D,X) = %} (1)

whereXn×m andL0 denote the family of all possiblen×m matrices inV and
the so calledL-zero norm (Chaturvedi, Green and Carrol, 2001), respectively.
S%(D) is called thecircle in Xn×m with centerD and radius%. Notice thatL0

defines a counting metric inXn×m in that in the limiting case asp → 0, theLp
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norm-based function

Lp(D,X) =
n∑

i=1

m∑
j=1

|dij − xij |p (2)

simply counts the number of mismatches in the matricesD and X. More
precisely, theLp norm approaches a counting metric asp → 0; theL0 metric
is then defined as this limiting case.

Next the proportion

π% =
#{X ∈ S%(D) : φM(X) = 1}

#S%(D)
(3)

is evaluated, which represents a measure of the uncertainty of the acceptability
criterionφM(D) under% fake datapoints inD.

It is straightforward to verify that the cardinality#S%(D) (also called the
perimeterof the circleS%(D)) is a function of the binomial coefficient in that

#S%(D) =
(

nm

%

)
(k − 1)% (4)

wherek denotes the number of elements in the value setV .
SGR grounds on two basic assumptions: (A1) theprinciple of indifference

and (A2) the number% of perturbed unitsin the data sampleD. The first
assumption reflects the fact that in the absence of further knowledge (a) all
entries inD are assumed to be equally likely in the process of replacement (b)
given an entrydij = v ∈ V of D (with V being the admissible value set for
D), the probabilityp(v′) for an elementv′ ∈ V \ {v} to replacev in the(ij)-
cell ofD is assumed equal to 1

#V−1 . In other words, SGR assumes the random
world model described in Bacchus et al. (1994). Therefore, SGR can be used
whenever we deal with randomly fake-data. The second assumption pertains
to the number% of perturbed units to represent in the model. The choice of
the amount obviously depends on the availability of external knowledge about
process faking. For example, in a personnel selection context this quantity
could be represented by the supposed maximal number of fake answers in a
personality questionnaire. In order to stress the importance of theL0 metric
we have renamed the procedureL0-SGR (Sample Generation by Replacements
underL0 metric).

Sampling approximation of S%(D) The reader may notice that the number of
perturbed matricesX in S%(D) can be very large, depending on the size of the
original datasetD, the assumed quantity% and the sizek of the value setV . For
this reason, in the evaluation of the proportionπ%, rather than using all possible
matrices inS%(D), we resort to generating random samples ofS%(D). More
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specifically we use a pseudorandom number generator to repeatedly replace
the originalh (h = 1, . . . , %) entries ofD with alternative values inV . In such
a way, given a random sampleR% of S%(D) with a sufficiently large sizes,
the sample proportionπ∗% might boil down to a satisfactory approximation of
the population proportionπ%. In particular, an approximate confidence interval

for π% based on a normal distribution is given byπ∗% ± t
√

var∗(π∗%) wheret

is the upperα/2 point of thet-distribution with s − 1 degrees of freedom
and var∗(π∗%) is an unbiased estimator of the variance ofπ% (see, for example,
Thompson 2002, 39-40). To obtain an estimatorπ∗% having probability at least
1−α of being no further than a selected valued from the population proportion
π%, the sample size formula based on the normal approximation gives

s =
0.5N

0.25 + (N + 1)(d2/z2)
,

whereN = #S%(D) andz is the upperα/2 point of the normal distribution.

7.3 Empirical Data Example

In this exploratory study we tested the new procedure on data from a study
in the personality domain. The current section is divided into three subsec-
tions: the first introduces the empirical data set and the factorial model; the
second discusses the use of theL0-SGR model to generate the family of per-
turbed datasets; and the third evaluates the acceptability criterion with respect
to percentage of perturbed entries in the original dataset.

7.3.1 Original Dataset and CFA Model

We illustrate the entire procedure using data collected by Vidotto and March-
esini (2000) on the interrelation between personality and student learning2.
Partecipants were 351 undergraduate students at the University of Modena
(Italy). Ages ranged from 18 to 31, with a mean of 21.01 and a standard de-
viation of 2.28. Data consisted of responses to 4 of the 155 items of the Mod-
ena Resources Personality Inventory (MRPI) (Vidotto and Marchesini, 2000)
scored on a 5-pointagree-disagreescale. The four items in Table 4.1 were
used as operational indicators of the theoretical constructemotional instabil-
ity. This psychological construct was validated in a series of factorial studies
that showed the plausibility of the factorial model depicted in Figure 4.2 (Vi-
dotto and Marchesini, 2000).

2We are grateful to Giulio Vidotto and Cristina Marchesini for providing us with such a data set.
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Table 4.1. Operational indicators of the theoretical constructemotional instability(Vidotto
and Marchesini, 2000).

Item Description
1 Several times I gave up because what I wanted to reach was too difficult.
2 I am never really relaxed.
3 When I think of my future I have negative feelings.
4 I have difficulties in sleeping because I cannot stop thinking of my

problems.

Figure 4.2. Factorial model.
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The resulting(351 × 4) data matrixD was subjected to a confirmatory
factor analysis (CFA) based on the above model. Results of the CFA were as
follows: χ2(2) = 2.295, CFI=0.988, NNFI=0.996 and SRMR=0.02, respec-
tively. The chi-square test statistic was not significant (p = 0.318). According
to commonly accepted cutoff values, all considered fit indices indicated a sat-
isfactory fit for the CFA model.

7.3.2 SGR Analysis

Variables and acceptability criteria Two different variables were considered
in our analysis

1 the proportionε of perturbed unitsin D with 40 different levels: 1
40 , 2

40 ,
3
40 , . . . , 40

40 as the independent variable,

2 the proportionπ% of acceptable modelsin R% as the dependent variable
with % being the integer approximation ofε(351× 4).

Unfortunately, since different definitions of model acceptability have been pro-
posed within the context of structural equation modeling (Bentler and Bonnet,
1980; Hu and Bentler, 1999; Mulaik et al, 1989), there are no consistent stan-
dards for what is considered an acceptable model. In this study we considered
three different acceptability criteria. The first criterion (φ

(1)

CFA) was simply the

χ2 statistic which provided a baseline fit criterion for our analysis. The remain-
ing two criteria (φ(2)

CFA andφ
(3)

CFA) were based on Hu and Bentler’s two-index
presentation strategy. This strategy has proven to retain relatively acceptable
proportions of simple and complex models and reject reasonable proportions
of various types of misspecified models in most conditions (Hu and bentler,
1999). More formally the criteria were defined as follows

φ
(1)

CFA(X) =
{

1 if χ2(2) < 5.99
0 if χ2(2) ≥ 5.99

φ
(2)

CFA(X) =
{

1 if CFI ≥ 0.96 and SRMR< 0.09
0 if CFI < 0.96 and SRMR≥ 0.09

φ
(3)

CFA(X) =
{

1 if NNFI ≥ 0.95 and SRMR< 0.09
0 if NNFI < 0.95 and SRMR≥ 0.09

In its basic form, a large value of the chi-square statistic, relative to its
degrees of freedom, is evidence that the model does not give a very good de-
scription of the data, whereas a small chi-square is evidence that the model is
a good one for the data. In particular, in our study the CFA model was rejected
whenever the statistic exceeded the value of 5.99, that is the (1−α)-percentile
of the chi-square distribution with two degrees of freedom andα = 0.05.



Evaluating Uncertainty of Model Acceptability 49

Unlike the chi-square test statistic, theComparative Fit Index(CFI) and
the Nonnormed Fit Index(NNFI, Bentler and Bonnet, 1980) offer a way to
quantify the degree of fit along a continuum. In particular, they are incremen-
tal fit indices that measure the proportionate improvement in fit by comparing
a target model with a more restricted nested baseline model. The CFI measures
the improvement in noncentrality in going from the target model to the base-
line model. Likewise the NNFI index can be used to compare either alternative
models or a proposed model against a null model. Finally theStandardized
Root Mean Square Residual(SRMR) is an absolute-fit index that directly as-
sesses how well ana priori model reproduces the sample data. Hu and Bentler
(1999) showed that a cutoff value close to .96 for CFI (resp. to .95 for NNFI)
in combination with SRMR> .09 resulted in the least sum of Type I and Type
II error rates.

Proportion estimatesIn order to compute the estimateπ
∗(i)
% (∀i = 1, 2, 3) we

resort to generating a familyR% ⊂ S%(D) of 3000 different perturbed matrices
X with exactly% replacements in accordance to the procedure described in
Section 2.1. Hence,3000 × 40 = 120000 different perturbed matrices were
constructed in the complete replacement design. Next the estimateπ

∗(i)
% was

computed by

π∗(i)% =
#{X ∈ R(%) : φ

(i)

CFA(X) = 1}
3000

. (5)

Notice that a sample size = 3000 would be sufficient to guarantee an estimate
π
∗(i)
% within distanced = 0.05 from the true proportionπ(i)

% with probability
0.95 (α = 0.05).

ResultsFigure 4.3 showsπ∗(1)% (proportion of acceptable models underφ(1))

as a function ofε (proportion of replacements). The upper bound forπ
∗(1)
%

was considered the proportion ofacceptable solutions(that is solutions for
which not improper parameter estimates occur). As espectd, the percentage
of acceptable models decreased with larger percentage of replaced elements
in D. In particular,π∗(1)

% converged towards an approximate value of 0.67
asε → 0.50. Moreover, the difference between the percentage of acceptable
solutions and the percentage of acceptable models also decreased with larger
percentage of replaced elements. Interestingly,π

∗(1)
% resulted larger than 0.90

asε ≤ 0.25. That is to say that more than 90% of the models resulted to be
acceptable when a maximum of 25% of randomly fake data were generated
(see also Tab 1.2, second column).

Likewiseπ
∗(2)
% was negatively related with percentage of replacements (see

Figure 4.4). The second criterion showed a stronger difference between the
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Figure 4.3. Parameterπ∗(1)% as a function of percentage of replacements - criterionφ(1). The percentage

of acceptable solutions is the upper bound forπ
∗(1)
% (superimposed bar-charts).

proportion of acceptable solutions and the proportion of acceptable models
(left part of Figure 1.4,ε ≤ 0.30). Thereforeφ(2) resulted in a more con-
servative criterion than the Chi-square statistic. This was in accordance with
Hu and Bentler’s results (Hu and Bentler, 1999) (see also Tab. 1.2, third col-
umn). Finallyφ(3) was shown to be the most conservative of the three criteria:
π
∗(3)
% ∈ [0.72 − 0.82] with ε ≤ 0.25 (see Figure 4.5 and Table 4.2, fourth

column).
Figure 4.6 shows the acceptability patterns associated withχ2, CFI, NNFI

and SRMR. A dominance relation can be read from Figure 4.6 as follows

NNFI � CFI� χ2 � SRMR∼ AS,

whereX � Y denotes thatX is more conservative thanY . Notice that SRMR
and AS (proportion of acceptable solutions) share the same pattern. Henceφ(2)

andφ(3) come down to CFI and NNFI, respectively. This turns out to the linear
orderφ(3) � φ(2) � φ(1).

Overall our results suggested that the performance of the CFA model was
sensitive to perturbed data sets. This effect was stronger in the third criterion
as it showed a clear replacement effect. In general, in SGR we recommend
to choose more conservative criteria in order to better evaluate the effect of
eventual fake data.



Evaluating Uncertainty of Model Acceptability 51

Figure 4.4. Parameterπ∗(2)% as a function of percentage of replacements - criterionφ(2). The percentage

of acceptable solutions is the upper bound forπ
∗(2)
% (superimposed bar-charts).

Figure 4.5. Parameterπ∗(3)% as a function of percentage of replacements - criterionφ(3). The percentage

of acceptable solutions is the upper bound forπ
∗(3)
% (superimposed bar-charts).



52 Luigi Lombardi, Massimiliano Pastore and Massimo Nucci

Figure 4.6. Model acceptability patterns as a function of percentage of replacements.

Table 4.2. (α = .05)-confidence intervals forπ∗(i)
% as a function of percentage of replacements

(100ε).

Acceptability criteria
100ε π

∗(1)
% π

∗(2)
% π

∗(3)
%

10% [0.90 - 1.0] [0.87 - 0.97] [0.72 - 0.82]
20% [0.90 - 1.0] [0.87 - 0.97] [0.77 - 0.87]
30% [0.87 - 0.97] [0.83 - 0.93] [0.72 - 0.82]
40% [0.77 - 0.87] [0.73 - 0.83] [0.67 - 0.77]
50% [0.63 - 0.73] [0.63 - 0.73] [0.59 - 0.69]
60% [0.62 - 0.72] [0.60 - 0.70] [0.58 - 0.68]
70% [0.60 - 0.70] [0.58 - 0.68] [0.55 - 0.65]
80% [0.61 - 0.71] [0.59 - 0.69] [0.57 - 0.67]
90% [0.60 - 0.70] [0.58 - 0.68] [0.55 - 0.65]

100% [0.60 - 0.70] [0.58 - 0.68] [0.55 - 0.65]
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7.4 Discussion and Possible Extensions

In this paper we have focused on the problem of evaluating acceptance criteria
when data with possible fake entries are analyzed. The SGR approach is es-
sentially based on a data generation - data analysis double procedure, which is
carried out by using a given target model. The model is supposed to be correct,
that is to say to adequately simulate the underlying process. However, model
mispecifications (e.g. error in model parameters, structures, assumptions and
specifications) could be another important source of error. Therefore an eval-
uation of model adequacy is needed. This could be done by using external
information about the model (e.g. theoretical constructs) and/or by consid-
ering former evaluations of the model (e.g. results replicated with different
empirical data).

The reader may have already noticed some similarities between the ap-
proach proposed here and standard Monte Carlo experiments in structural equa-
tion modeling (Bentler, 1990; Curran et al., 1996; Hu & Bentler, 1998, 1999;
la Du & Tanaka, 1989; Mulaik et al., 1989). For example, the idea of gener-
ating new data sets. However, the two approaches are substantially different.
Usually a Monte Carlo experiment uses a hypothesized model to generate new
data under various conditions. Therefore the simulated data are used to eval-
uate some characteristics of the model. This, of course, implies that the dis-
tribution of the random component in the assumed model must be known, and
it must be possible to generate pseudorandom samples from that distribution
under the desired conditions planned by the researcher.

Instead of using the hypothesized model structure to generate simulated
data sets, our approach uses the original data sample in order to generate a
new family of data sets. In particular, these new data sets are obtained by
adding structured perturbations in the original data set. In the latter case, each
new sample represents an alternative scenario which is directly derived from
the original sample. Next, the result of a target criterion can be compared
with the ones obtained from the perturbed samples. In this case, of course,
the distributional properties of the statistics are not those that hold under a
particular model hypothesis (like for Monte Carlo simulation studies); rather
they are the properties under a model whose parameters corresponds to values
fitted from a structured collection of perturbed samples that are generated from
a given real data set.

Several possible extensions of the elementaryL0-SGR model may be con-
sidered. In the present paper, under the assumption of the principle of indiffer-
ence, a very simple SGR model has been proposed as a model for Likert-type
data. However, the current approach can be straightforwardly extended to cat-
egorical data as well as to continuous data. In particular, a SGR model for
continuous data would imply a different kind of metric, for example either
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the city-block distance(L1) or the standard Euclidean distance(L2). These
new extensions would enlarge the general replacement schema by adding more
complex constraints with which we could provide more structured perturbed
scenarios.

All in all, although our approach is tentative and more work is needed to
better understand its full potentialities, the overall lack of modeling data-error
effects in structural models suggests that SGR can be a promising new method
to analyze acceptability criteria under empirical data set perturbed with error.

References

Bacchus, F., Grove, A., Halpern, J.Y., & Koller, D. (1994). Generating new
beliefs form old.Uncertainty in Artificial Intelligence (UAI-94), 37-
45.

Bentler, P.M. (1990). Comparative fit indexes in structural model.Psycholog-
ical Bulletin, 107, 238-246.

Bentler, P.M., & Bonnett, D.G. (1980). Significance tests and goodness of fit
in the analysis of covariance structures.Psychological Bulletin, 88,
588–606.

Chaturvedi, A., Green, P. E., & Caroll, J. D. (2001). K-modes clustering.
Journal of Classification, 18, 35-55.

Curran, P.J., West, S.G., & Finch, J.F. (1996). The robustness of test statistics
to nonnormality and specification error in confirmatory factor analy-
sis.Psychological Methods, 1, 16-29.

Hu, L., & Bentler, P.M. (1998). Fit indices in covariance structure modeling:
Sensivity to underparameterized model misspecification.Psycholog-
ical Methods, 3, 424-453.

Hu, L., & Bentler, P.M. (1999). Cutoff criteria for fit Indexes in covari-
ance structure analysis: Conventional criteria versus new alternatives.
Structural Equation Modeling, 6, 1-55.

la Du, T.J., Tanaka, & J.S. (1989). Influence of sample size, estimation
method, and model specification on goodness-of-fit assessments in
structural equation models.Journal of Applied Psychology., 74, 625-
635.

Mulaik, S.A., James, L.R., Van Alstine, J., Bennet, N., Lind, S., & Stilwell,
C.D. (1989). Evaluation of goodness-of-fit indices for structural equa-
tion models.Psychological Bulletin, 105, 430-445.

Thompson, S.K. (2002).Sampling(2nd ed.). New York: Wiley.
Vidotto, G., & Marchesini, C. (2000).La realizzazione professionale. Analisi

delle risorse personali e dei processi decisionali per l’orientamento
scolastico-professionale. Milano: Franco Angeli.


