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Abstract In this short paper, we describe a Bayesian beta linear model to analyse
imprecise rating responses. The non-random imprecision is extracted from crisp re-
sponses via the Item Response Theory tree (IRtree) method and it is represented by
means of beta fuzzy numbers. The parameters of the beta linear model are estimated
using the adaptive Metropolis-Hastings algorithm, with the fuzzy likelihood func-
tion being used as empirical evidence for the imprecise observations. A real case
study is used to show the characteristics of the fuzzy beta regression model.

Abstract Questo contributo descrive l’applicazione del modello di regressione beta
nell’analisi di dati imprecisi. In questo contesto, l’imprecisione è riferita ad una
fonte non casuale di incertezza ed è calcolata mediante il metodo fuzzy-IRTree.
Il risultato di tale pre-trattamento è una collezione di insiemi fuzzy di tipo beta.
I parametri del modello di regressione beta sono stimati mediante l’algoritmo
Metropolis-Hastings di tipo adattivo mentre l’evidenza empirica dei dati è espressa
mediante una funzione di verosmiglianza imprecisa. Il contributo si chiude con
l’analisi di un caso studio.
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1 Introduction

Rating data are widespread across disciplines dealing with human-based measure-
ments. In these cases, since the measurement process is based on cognitive actors,
the collected data are often affected by non-random imprecision or fuzziness. This
type of uncertainty has multiple origins, including the semantic aspects of the items
being rated and the individual-level decision uncertainty underlying the response
process [1]. To give an example, consider the situation where the item “I am sat-
isfied with my life” is rated through a scale ranging from “strongly disagree” to
“strongly agree”. A stage-wise response process is usually involved in responding
to these types of items. In particular, in a first step cognitive and affective informa-
tion about the item being rated are retrieved and integrated (opinion formation stage)
until the second decision stage is triggered, which includes the selection of the final
rating response (e.g., “strongly disagree”). Because of the integration of conflicting
cognitive and affective information about the item, fuzziness arises from the con-
flicting demands of the opinion formation stage [2]. Over the recent years, several
fuzzy rating scales have been proposed to quantify fuzziness from rating data, in-
cluding both direct/indirect fuzzy rating scales and fuzzy conversion scales (for an
extensive review, see [1]). While direct fuzzy rating scales quantifies fuzziness by
mapping response process to fuzzy numbers directly, fuzzy indirect scales aim at
turning standard crisp ratings into fuzzy numbers by means of statistically-based
procedures (e.g., see [3]). Unlike for the previous case, here the aim is to represent
as much information as possible from the rating process in terms of a more com-
plex number representation. Once fuzzy numbers have been obtained, they can be
analysed either by means of standard statistical approaches or by adopting fuzzy
statistical methods devoted to this purpose (e.g., see [4]).

In this contribution, we describe an application of a Bayesian beta linear model to
the analysis of IRTree-based fuzzy data, a novel type of fuzzy responses which treat
fuzziness in terms of decision uncertainty [1]. The remainder of this short paper is
as follows. Section 2 describes the fuzzy beta data. Section 3 exposes the Beta linear
model along with the parameter estimation procedure. Finally, Section 4 concludes
this contribution by illustrating the application of the proposed method to a real
dataset.

2 Data

IRTree-based fuzzy data represent a particular type of fuzzy numbers which are the
output of a psychometric-based fuzzy conversion method (i.e., the Item Response
Theory tree approach). In particular, they are computed in a way that the imprecision
encapsulated into the matrix of crisp rating data Yn×J is mapped onto beta fuzzy
numbers using all the rater’s responses yi to the J items being rated. The reader can
refer to [1] for technical details about the conversion system. In this context, data
consist of a collection of n (raters) × J (items) beta fuzzy numbers:
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=Y = (ξ=y11 , . . . ,ξ=y1J , . . . ,ξ=yn j , . . . ,ξ=ynJ )

where

ξ=yi j(y) =
1
C

ya−1(1− y)b−1 (1)

a = 1+ms and b = 1+ s(1−m)

In this representation, m ∈ (0,1) is the mode of the set, s ∈ (0,∞) is the precision
of the set, whereas C is a constant ensuring that maxy∈Y ξ=y(y) = 1. Note that ξ=yi j is
a normal and convex fuzzy set which lies in the interval (0,1)⊂ R. Because of the
parametric representation involved by beta fuzzy numbers, the observed fuzzy data
can be represented using two matrices, namely the matrix of modes Mn×J and that
of precisions Sn×J . Figure 1 shows an example of beta rating responses. It should
be remarked that, in view of the fuzzy-IRTree representation adopted here, m rep-
resents the most plausible rating choice, s is the precision of m (i.e., smaller values
indicate larger levels of hesitation in the rating choice), and ξ=yi j codifies the decision
uncertainty in terms of fuzziness (the larger the fuzziness, the highest the decision
uncertainty). Ideally, in the case of no decision uncertainty, the fuzziness would
vanish and the true rating realization would be precisely observed.
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Fig. 1 An example of beta fuzzy responses.

3 Model and parameter estimation

To analyse fuzzy rating data we will adopt the Beta linear model proposed by [4],
which is particularly well-suited for bounded rating responses. For a crisp collection
of i.i.d. (0,1)-realizations y = (y1, . . . ,yn), the Beta density is as follows:
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fY(y; µ,φ) =
n

∏
i=1

Γ (φi)

Γ (φiµi)Γ (φi −µiφi)
y(µiφi−1)

i (1− yi)
(φi−µiφi−1) (2)

where
µ = (1+ exp(Xβ ))−1 and φ = exp(Zγ) (3)

where µ ∈ (0,1)n is the n×1 vector of location parameters and φ ∈ (0,∞)n the n×1
vector of precision parameters, which have been linearly expanded to account for the
presence of covariates. To estimate model parameters θ = (β ,γ), we use an adaptive
Metropolis-Hastings algorithm where the transition distribution is approximated by
means of a multivariate Normal distribution q(θ (t)|θ (t−1)) =N (;θ (t−1),Σ (t)), with
the covariance matrix Σ (t) being adapted at each step by using a convenient sub-
sample from the previous samples [5]. In this context, the acceptance ratio of the
sampler is as follows:

α(t) =
L(θ (t);m,s)q(θ (t−1)|θ (t)) f (θ (t))

L(θ (t−1);m,s)q(θ (t)|θ (t−1)) f (θ (t−1))
(4)

where L(θ (t);m,s) is the likelihood function for the fuzzy sample of data and
f (θ (t)) is the prior density ascribed to the model parameters. In the case of i.i.d.
and non-interactive fuzzy responses, the imprecise likelihood function is as follows
[6, 7]:

L(θ (t);m,s) =
n

∏
i=1

; 1

0
ξ=yi(y;mi,si)

Γ (φi)y(µiφi−1)(1− y)(φi−µiφi−1)

Γ (φiµi)Γ (φi −µiφi)
dy (5)

4 Application

In the present application we aimed to investigate the predictors of sexual intimacy
in a sample of n = 450 participants from Flanders (73% female, mean age 32.9
years, mean relationship length 7.68 years).1 Because of its characteristics, assess-
ing the determinants of sexual intimacy is a typical situation in which raters show
some levels of decision uncertainty in providing their self-reported responses. The
survey consisted of four questionnaires used to measure (i) the perceived sexual in-
timacy with the partner, (ii) the perceived partner responsiveness (i.e., the extent to
which one experiences the partner as being responsive to emotional needs), (iii) the
sexual desire, (iv) the avoidant attachment score (i.e., how ambivalent early develop-
mental experiences affect the current relationship). The items have been measured
on a 7-point Likert-type scale with response categories ranging from 1 (“definitely
not”) to 7 (“yes, definitely”). The items associated with sexual intimacy have been
fuzzified using the fuzzy-IRTree method [1] and the ensuing fuzzy beta responses

1 The dataset is publicly available at http://osf.io/adgw2/. For further details about the
survey, see [8].
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have been averaged to form the final intimacy indicator (see Figure 1 for a subsam-
ple of fuzzy responses). Following the findings by [8], three additive Beta linear
models M1-M3 have been defined to predict sexual intimacy (see Table 1). The
models have been varied in terms of covariates for the term µ , whereas no covari-
ates have been used to model the precision term (i.e., φ = exp(1γ)). For all the mod-
els, diffuse Normal densities have been used for the priors f (β ) =N (β ;0,I10) and
f (γ)=N (γ;0,3) and four parallel MCMC have been run with 20000 samples (5000
samples for the burn-in phase) by means of the R package MHadaptive. The final
model has been chosen according to the LOO information criterion as implemented
by the R package loo [9]. According to the Gelman and Rubin’s convergence diag-
nostics, all the chains reached the convergence (i.e., R̂ = 1.00). Table 2 reports the
posterior quantiles along with the 95% HDIs for the six model parameters. Figure
2 shows the marginal posterior densities for the model parameters whereas Figure
3 plots the predicted curves against the observed fuzzy data as a function of both
continuous and categorical predictors. The posterior results suggest that sexual in-
timacy is predicted by the perceived partner responsiveness, with a slight decrease
of the outcome for the case in which the partner is male. The other predictors seem
to play a marginal role in predicting sexual intimacy, with a negative relationship
between avoidant attachment style and sexual intimacy as expected.

Model Covariates LOOIC
M1 partner respo, sex desire 873.80

M2 partner respo, sex desire, attach avoid 863.50

M3 partner respo, sex desire, attach avoid,
gender partner

857.00

Table 1 Application: Models for the sexual intimacy fuzzy rating data. Note that M3 is the best
model according to the lowest LOO-IC criterion.

β0 βpartner respo βsex desire βattach avoid βgender partner:Male γ
min -1.01 0.11 -0.01 -0.05 -0.26 3.90
mean -0.59 0.13 0.02 -0.03 -0.11 4.35
max -0.12 0.15 0.04 -0.00 0.03 4.90
0.95 HDIlb -0.83 0.12 0.01 -0.04 -0.20 4.10
0.95 HDIub -0.36 0.14 0.03 -0.01 -0.04 4.68

Table 2 Application: Posterior quantiles and 95% HDI for the model parameters. Note that β0 is
the intercept of µ and codifies the level gender partner = Female.
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Fig. 2 Application: Marginal posterior densities for the model parameters.
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Fig. 3 Application: Observed fuzzy data for sexual intimacy as a function of the categorical predic-
tor gender partner (colors in the panels) and the three continuous predictors (panels). Fitted
curves correspond to posterior means (see Table 2) whereas shadows represent the posterior 95%
HDI of the predicted curves. Note that rectangles represent α-cuts of the observed fuzzy data with
α = 0.5, i.e. yα

i =
,
min

)
{y ∈ [0,1] : ξ=yi (y)> 0.5}

*
,max

)
{y ∈ [0,1] : ξ=yi (y)> 0.5}
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