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Data structures

Statistics is the art of collecting, modeling, analyzing, and interpreting data.
To pursue these goals, several data structures can be used to represent data
(e.g., units, variables) and the relationships among them. The main available
structures are the following:

Arrays

Dictionaries

Trees

Graphs
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Data structures
Arrays

An array XI×J×...×K is a collection of IJK data items of the same type, where
each item xij...k is referred to as an element. The elements in an array can be of
any valid data type, such as character, integer, or real/double.

The elements of array share the same variable name but each one carries a
different index number known as subscript. The array can be 1-dimensional
(row/column vectors), 2-dimensional (matrices) or multidimensional.
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Data structures
Arrays

x11 . . . x1j . . . x1J

x11

...
xi1

...
xI1

Example of a 1-dimensional matrix X1×J (row vector) or XI×1 (column vector)
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Data structures
Arrays

x11 . . . x1j . . . x1J

...
...

...
xi1 . . . xij . . . xiJ

...
...

...
xI1 . . . xIj . . . xIJ

Example of a 2-dimensional matrix XI×J
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Data structures
Arrays

x111 . . . x1j1 . . . x1J1

...
...

...
xi11 . . . xij1 . . . xiJ1

...
...

...
xI11 . . . xIj1 . . . xIJ1

x112 . . . x1j2 . . . x1J2

...
...

...
xi12 . . . xij2 . . . xiJ2

...
...

...
xI12 . . . xIj2 . . . xIJ2

x113 . . . x1j3 . . . x1J3

...
...

...
xi13 . . . xij3 . . . xiJ3

...
...

...
xI13 . . . xIj3 . . . xIJ3

Example of a multidimensional matrix XI×J×3
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Data structures
Arrays

Examples:

Data series (1-d matrix)

Units × Variables matrices (2-d matrix)

Corr/Cov matrices (2-d matrix symmetric and positive-definite)

Image data, Tensor data (M-d matrix like those used in Neural Networks)
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Data structures
Dictionaries

A dictionary is a data structure that stores data in key-value pairs ⟨x, a⟩. Each
unique key ai is associated with a specific value xi , and the key can be used
to retrieve the corresponding value efficiently. Dictionaries are also known as
associative arrays or hash maps.
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Data structures
Dictionaries

x1

...
xi

...
xI

a1

...
ai

...
aI

Example of a dictionary with I elements. The key values can be represented
using characters (labels).
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Data structures
Dictionaries

Examples:

Frequency distributions with a representing the units and x the associated
frequency or counts.
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Data structures
Trees

A tree data structure is a hierarchical data structure that consists of nodes
connected by edges. Each node can have multiple child nodes, but only one
parent node. It has no cycles: there is exactly one path between any two nodes.

The topmost node in the tree is called the root node, which has no parent. The
terminal node with no children is called leaf.
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Data structures
Trees

root

node 1

node 3|1 node 4|1

node 2

node 3|2

node 1|3 node 2|3

node 4|2

Example of a standard tree with height equal to 3.
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Data structures
Trees

Example of a phylogenetic tree with height equal to 3.
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Data structures
Trees

Examples:

Dendrograms to represent hierarchical clustering

Classification and Regression trees
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Data structures
Graphs

A graph consists of a set of nodes (also called vertices) and a set of edges (also
called arcs) that connect pairs of nodes. Graphs are versatile and powerful for
representing complex relationships between objects or units.

Antonio Calcagǹı ∥ Lecture 0 Data structures 14/34



Data structures
Graphs

A graph consists of a set of nodes (also called vertices) and a set of edges (also
called arcs) that connect pairs of nodes. Graphs are versatile and powerful for
representing complex relationships between objects or units.

Unlike trees, graphs have a more general structure without a strict hierarchy and
they

can contain cycles (i.e., multiple paths between nodes)

do not have a single root node

can be either connected (there is a path between every pair of nodes) or
disconnected (some nodes are not reachable from others)

can have directed edges (one-way connections) or undirected edges
(two-way connections)
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Data structures
Graphs

A

B

C

DE

Example of undirected and connected network structure with 5 nodes.
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Data structures
Graphs

A

B

C

D

E

F

G

Example of undirected and disconnected network structure with 7 nodes.
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Data structures
Graphs

A

B

C

DE

Example of directed and connected network structure with 5 nodes.
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Data structures
Graphs

Examples:

Properly network-based data
(e.g., social, economic, biological, transportation, communication)

Markov-based models
(e.g., dynamic, with hidden states, queues, supply chains)
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Data structures
Graphs

A
B

C

D
E

F

Example of multiplex network structure with 2 layers.
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Data structures
Graphs

Multiplex networks are powerful and versatile in representing complex and struc-
tured phenomena where basic network structures can vary as a function of other
variables (e.g., covariates).

Examples:

A typical example is that of social network data where relationships among
units/individuals vary as a function of the type of relationship (e.g., friendship,
professional, familiar).
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Notable examples of network data
Abilene Internet Network

Source: Kolaczyk E. (2009). Statistical analysis of network data. Springer
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Notable examples of network data
Pattern citation among Internet blogs

Source: Kolaczyk E. (2009). Statistical analysis of network data. Springer

Note: Directed edges indicate direct webpage links from a webpage to another.
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Notable examples of network data
Air traffic networks

Source: Ren, P., & Li, L. (2018). Characterizing air traffic networks via large-scale aircraft tracking data. Journal
of Air Transport Management, 67, 181-196.
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Notable examples of network data
Anatomical connectivity and brain network

Source: Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353-364.
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Notable examples of network data
Network analysis on team sports

Source: Clemente, F. M., Silva, F., Martins, F. M. L., Kalamaras, D., & Mendes, R. S. (2016). Performance
Analysis Tool for network analysis on team sports: A case study of FIFA Soccer World Cup 2014. Proceedings of
the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 230(3), 158-170.
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Notable examples of network data
Network analysis of political groups

Source: Greene, D., & Cunningham, P. (2013). Producing a unified graph representation from multiple social
network views. In Proceedings of the 5th annual ACM web science conference.
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Notable examples of network data
Network analysis of narratives in US elections 2012

Source: Sudhahar, S., Veltri, G., Cristianini N. (2015). Automated analysis of the US presidential elections using
Big Data and network analysis. Big Data & Society, 2(1).
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Background on graph theory
Introduction

So far we have treated a network structure qualitatively, as a collection of
nodes and edges without any formal representation. The graph theory is usually
adopted to provide a mathematical representation of network structures.
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Background on graph theory
Basic definitions

A graph G = (V, E) consists of
a set V ⊂ N of vertices (nodes)

a set E = {(u, v) ∈ V × V | u ̸= v} of edges (links)
with (u, v) unordered pair of distinct vertices.

The number of vertices Nv = |V| is the order of the graph G whereas the number
of edges Ne = |E| is the size of G.

A graph H is a subgraph of G if VH ⊆ VG and EH ⊆ EG .
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Background on graph theory
Basic definitions

A graph G for which the pair {u, v} is distinct from {v , u} is called direct graph.
Otherwise is an undirect graph.

u

v

z

u

v

z
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Background on graph theory
Basic definitions

Two vertices u ∈ V and v ∈ V are said to be adjacent if there is an edge e ∈ E
between them. In this case, they are also connected. However, three vertices
u, v , z are said to be connected is there is path that can be traversed to go from
one vertex to the other. Adjacency implies connectivity but the opposite is not
always true.

u

v

z

u

v

z
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Background on graph theory
Basic definitions

u

v

z

y

Shortest path: L({z, u, y}) = 2

Diameter: D(G) = 3

A path connecting z and y is a sequence of inter-
mediate vertices connecting them. In this case,
we have several possibilities, e.g. p1 = {z , u, y},
p2 = {z , v , u, y}. The quantity L(pi ) = |pi | − 1
is the path length.

The geodesic distance between z and y is the
shortest path connecting them.

The diameter of a graph is the maximum
geodesic distance between any pair of vertices.
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Background on graph theory
Basic definitions

u

v

z

y

Density: D(G) = 0.33

The density is a measure that indicates how
dense an undirect graph is relative to its size:

D(G) = 2Ne

Nv (Nv − 1)

When G is directed then the numerator of D(G)
is simply Ne .

D(G) ∈ (0, 1) indicates partial connectivity, with
D(G) = 1 indicating that G is a dense graph.
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Background on graph theory
Basic definitions

u

v

z

y

In simple network data, edges of a graph G are
unweighted. However, there are several impor-
tant situations where edges should be weighted
according to their importance. In this case, G is
said to be weighted graph and edges are usually
depicted by varying their size.
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Background on graph theory
Relevant types of graph

u

v

z

y

A graph G is said to be complete is every vertex
vi ∈ V is joined to every other vertex vj ∈ V.

It contains Nv vertices and it has Nv (Nv−1)
2

edges.

It is the densest graph with maximum connec-
tivity. The case G3 depicts a triangle.
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Background on graph theory
Relevant types of graph

u v

z

y

Example of 2-regular graph

A graph Gd is said to be d-regular if every vertex
in G has exactly d edges connected to it.

They are usually used in network design (to de-
sign networks with uniform connectivity), in cod-
ing theory (they are applied in error-correcting
codes), or combinatorial optimization.
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Background on graph theory
Relevant types of graph

u

v

z

y w

t

A graph Gd is said to be bipartite if there exists
V0 ⊆ V and V1 = V \ V0 s.t. every edge of G
has one vertex in V0 and one in V1.

This type of graphs are typically used to rep-
resent membership networks, with members de-
noted by vertices in V1 and organizations by ver-
tices in V0
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Background on graph theory
Relevant types of graph

u

v

z

y

A graph G is said to be undirected acyclic if
there are no loops/circuits (i.e., a disconnected
graph).

This type of graphs are typically represented as
trees (connected acyclic graphs) or forests (col-
lection of disjoint trees).
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Background on graph theory
Relevant types of graph

u

v

z

y

A graph G is said to be directed acyclic (DAG)
if there are no directed loops/cycles (i.e., no way
to start at a vertex v , follow the directed edges,
and return to v again).

This type of graphs have a topological ordering
and they are commonly used to represent de-
pendencies (e.g., causal models). In Epidemiol-
ogy, causal DAGs are systematic representation
of causal relationships.
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Background on graph theory
Matrix representation of a graph

1

2

3

4

The connectivity of a graph G can be represented
in terms of a Nv × Nv binary adjacency matrix
A with entries:

aij =

{
1, if {i , j} ∈ E
0, otherwise

The matrix A is non-zero for those entries whose
row-column indices correspond to vertices joined
by an edge.

A4×4 =


0
1 0
1 1 0
1 1 1 0


Note: for undirected graphs, A is symmetric
whereas for directed graphs A is not necessar-
ily symmetric.
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Background on graph theory
Matrix representation of a graph

1

2

3

4

A4×4 =


0
1 0
1 1 0
1 1 1 0



Vertex degree:

d(i)out = Ai+ =
∑Nv

j=1 aij

d(j)in = A+j =
∑Nv

i=1 aij

Number of walks:

If Ar then arij is the number of walks of length r
between i and j on G.

Regular graphs:

G is regular if the maximum degree dmax of G is
an eigenvalue of A.
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Background on graph theory
Matrix representation of a graph

1

2

3

4

A4×4 =


0
1 0
1 1 0
1 1 1 0



From ANv×Nv one can construct the so-called
incidence matrix BNv×Ne , which relates vertices
to edges as follows

bij =

{
1, if vertex i is incident to edge j

0, otherwise

In the example, the collection of edges is

e1 = {1, 2}, e2 = {1, 3}, e3 = {1, 4}
e4 = {2, 3}, e5 = {2, 4}, e6 = {3, 4}

and the incidence matrix is the following

B4×6 =


1 1 1 1 0 0
1 0 1 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1


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Background on graph theory
Matrix representation of a graph

1

2

3

4

A4×4 =


0
1 0
1 1 0
1 1 1 0



The Laplacian matrix LNv×Nv encapsulates the
connectivity and structure of the graph G and it
is computed as

L = D− A

where D = diag(d) is the diagonal matrix con-
taining the Nv × 1 vector of degrees d of G.

Studying the matrix L provides valuable insights
into the structure of G. For instance, since the
first eigenvalue λ1 = 0 of L, then the larger
λ2 is, the more connected G is. Consequently,
the more difficult it is to separate G into discon-
nected subgraphs.
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Typical network features

Small world: nodes are highly clustered locally yet connected by short paths
globally, promoting efficient communication and network navigation.

Hub: a few nodes with a higher number of connections (edges) compared to
other nodes in the network. Hubs play a crucial role in network structure and
function, often serving as pivotal points of connectivity or influence.

Scale-free: The degree distribution follows a power-law, meaning that there
are a few highly connected nodes (hubs) and many nodes with relatively few
connections. This property contrasts with random networks, where node degrees
follow a Poisson distribution.

Community structure: groups of nodes that are densely connected internally but
less connected to nodes in other groups, revealing natural clusters or communities
within the network.

Homophily: tendency of nodes to connect preferentially with other nodes that
share similar attributes or characteristics.
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Typical network features

A typical social network with two communities, three hubs, and a certain degree of
homophily in the communities. The small-world property can be also appreciated.
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