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From data to networks

Data that are already represented as a network do exist. These datasets naturally
embody the structure of nodes and edges without requiring transformation from
another format usually not structured as a network.

Examples of these include: internet topology data, citation networks, social
network data, transportation networks, neural and gene networks, financial net-
works.
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From data to networks

Quite generally, the process of constructing a network graph representation
from a system of interest based on a set of measurements from that system is
largely informal.

Indeed, users need to specify what should constitute a vertex and an edge to build
up the associated graph. There could be many potential graph representations
for the same set of measurements.

Two graphs G and H are said to be isomorphic if their structure remains un-
changed after relabelling their vertices and edges.
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From data to networks

Although a graph G is just a pair of particular sets, the geometry for representing
G can be quite informal unless one defines a problem of network topology
inference.
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From data to networks

Although a graph G is just a pair of particular sets, the geometry for representing
G can be quite informal unless one defines a problem of network topology
inference.

Given a set of measurements and a set of candidates {G1,G2, . . .} the goal is
that of finding Gi that best captures the underlying state of the system. This
can be performed by defining an apriori model (e.g., ERGM, SBM, LSM) and
check whether it applied to the system being studied (confirmatory approach).
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From data to networks

Although a graph G is just a pair of particular sets, the geometry for representing
G can be quite informal unless one defines a problem of network topology
inference.

Given a set of measurements and a set of candidates {G1,G2, . . .} the goal is
that of finding Gi that best captures the underlying state of the system. This
can be performed by defining an apriori model (e.g., ERGM, SBM, LSM) and
check whether it applied to the system being studied (confirmatory approach).

Another way is to infer the network topology directly from the data, for instance
by predicting links or by inferring the interior of the graph using only vertices
that are at the perimeter of the structure (tomographic inference).
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From data to networks

When the research interest does not lie in inferring the network topology, visu-
alizing a graph G (i.e., assigning a topology) is not an easy task.

There are several algorithms that can be used to embed G = (V, E) into two- or
three-dimensional Euclidean space:

spring-embedder methods

energy-placement methods

multidimensional-scaling methods

. . .
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From data to networks

(a) Circular layout (b) Spring-embedder (c) MD scaling

Source: Kolaczyk E., Csardi G. (2014). Statistical analysis of network data with R. Springer
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From data to networks
Mapping networks

1 Collecting measurements from a system

2 Creating the graph

(a) Identify nodes (e.g., in a social network, nodes could be individuals)

(b) Define edges (e.g., in a social network, edges could represent friendships
or connections)

(c) Assign attributes (e.g., edges might have weights representing the
strength of the connection)

3 Visualize and analyze the graph
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From data to networks
Mapping networks

Quite often network graphs are constructed from basic measurements for a col-
lection of units and information about them (e.g., interactions, associations,
co-occurrences). The choice of what is meant by vertices and edges is impor-
tant since it influences the network structure as well as the analyses we can run
on it.
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Mapping networks

Quite often network graphs are constructed from basic measurements for a col-
lection of units and information about them (e.g., interactions, associations,
co-occurrences). The choice of what is meant by vertices and edges is impor-
tant since it influences the network structure as well as the analyses we can run
on it.

Units can be of any type, including individuals (e.g., in social networks), server
machines (e.g., in internet network), airplanes (e.g., in air traffic networks),
questionnaire items or traders (e.g., in socio-economic networks).
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From data to networks
Mapping networks

Quite often network graphs are constructed from basic measurements for a col-
lection of units and information about them (e.g., interactions, associations,
co-occurrences). The choice of what is meant by vertices and edges is impor-
tant since it influences the network structure as well as the analyses we can run
on it.

Units can be of any type, including individuals (e.g., in social networks), server
machines (e.g., in internet network), airplanes (e.g., in air traffic networks),
questionnaire items or traders (e.g., in socio-economic networks).

Interactions can be regarded as friendship (e.g., in social networks), package
exchanges (e.g., in internet network), routes (e.g., in air traffic networks), item
correlations or transactions (e.g., in socio-economic networks).
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From data to networks
Mapping networks

Measurements among units can be of any type, including counts (i.e., natural
number), presence/absent (i.e., integer), densities, fluxes, or other continuous
measurement (i.e., reals).

The starting point of any analysis is to construct the lists of vertices, nodes, and
adjacencies (weighted ot not).
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From data to networks
Mapping networks: Zachary’s karate club

The well-known Zachary’s dataset contains thirty-four members of a karate
club alongside their social interactions. During the Zachary’s study from 1970
to 1972, a conflict between the administrator Mr. Hi and the instructor John A.
led to the club splitting into two. Half joined the admin’s new club, while others
either found a new instructor or left karate altogether.
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From data to networks
Mapping networks: Zachary’s karate club

The dataset is a dictionary containing 78 elements of members connections (the
element 1 indicates Mr. Hi whereas the element 34 John A.) and their frequency
(third list).

1 2 4
1 3 5
1 4 3
1 5 3
1 6 3
...

...
...

31 33 3
31 34 3
32 34 4
33 34 5
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From data to networks
Mapping networks: Zachary’s karate club

A graph G for the karate club can be built by letting the thirty-four members be
the vertices and the social interactions be the edges:

V = {1, 2, . . . , 34}

E = {{1, 2}, {1, 3}, . . . , {32, 34}, {33, 34}}

The corresponding adjacency matrix is as follows:

A34×34 =


0 1 1 1 1 1 1 1 1
1 0 1 1 0 0 0 1 0
...

...
...

0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1


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From data to networks
Mapping networks: Zachary’s karate club

Unless one proceeds by inferring a proper network topology from the data, the
last step of the mapping procedure consists of rendering the network graph using
one of the available algorithms or techniques. Here we propose the results of
four well-known algorithms.
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From data to networks
Mapping networks: Zachary’s karate club

H
2
3
4

5
678910111213

14
15
16
17
18
19
20
21
22
232425262728

2930
31
32
33
A

(A) Circular

H 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 A

(B) Grid
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From data to networks
Mapping networks: Zachary’s karate club
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(D) Fruchterman-Reingold
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Outline

1 From data to networks

2 Descriptive analysis of network graphs
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Descriptive analysis of network graphs

Once a graph network graph representation has been obtained from the data, it
is common to explore the characteristics and structural properties of the network.

The goal is that of summarizing the topological structure using simple metrics
or more complex relational patterns.

The tools used in this type of structural analysis can be grouped into thee levels:

- Node or edges-level analysis (A)

- Network-level analysis (B)

- Temporal-level analysis (for dynamic network graphs)
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Descriptive analysis of network graphs
(A) Degree distribution

Let G = {V, E} be an undirected graph with adjacency matrix AG . For each
node/vertex v ∈ V the number of edges d incident upon v can be computed. The
collection {fd}d>0 is the degree distribution of G, which is simply the histogram
of the degree sequence.

Studying the distribution of dG provides insights into the type of network G
embeds:

Scale-free dG ∼ PL(d ;α) Power-Law distribution

Random network (Erdős–Rényi) dG ∼ Poi(d ;λ) Poisson

Regular network dG ∼ δ(d − d0) Degenerated distribution on d0
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Descriptive analysis of network graphs
(A) Degree distribution

When G is directed, the degree distribution is computed by summing the weights
of adjacent vertices. In this case, one get the so-called strength measure.
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Descriptive analysis of network graphs
(A) Degree distribution
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Descriptive analysis of network graphs
(A) Centrality

Measures of centrality seek to quantify to what extent a vertex/node v ∈ V is
important in the graph G.
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Descriptive analysis of network graphs
(A) Centrality

Closeness: A vertex v is central if it is close to many other vertices. It is
computed as

cClo(v) =

(∑
u∈V

dist(v , u)

)−1

where dist(v , u) is the geodesic distance (shortest path length) between v and
u. The Dijkstra’s algorithm can be used in this case.
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Descriptive analysis of network graphs
(A) Centrality

Betweeness: A vertex v is central if it lies on paths between other vertices. It is
computed as

cBtw (v) =
∑

u ̸=v ̸=z∈V

σ(u, v |z)
σ(u, v)

where

σ(u, v |z) is the number of shortest paths between u and v passing
through z

σ(u, v) =
∑

z∈V σ(u, v |z) is the number of paths between u and v
regardless of z
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Descriptive analysis of network graphs
(A) Centrality

Eigen-centrality: A vertex v is central if it is connected to other vertices that
are themselves central. It is computed by solving the Eigenvector problem of the
adjacency matrix A:

cEigen(v) =
1

λ

∑
u∈V

a(u, v)cu

where

a(u, v) is the adjacency value for the pair {u, v}
λ is the largest eigenvalue of A

cu centrality of node u
(initially unknown, it needs to be iteratively computed)
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Descriptive analysis of network graphs
(A) Centrality

1

2

3

4

5

6

7

8

node cClo cBtw cEigen
1 0.44 2.50 0.29
2 0.44 2.50 0.29
3 0.47 2.50 1.00
4 0.35 0.50 0.22
5 0.58 12.00 0.95
6 0.35 0.00 0.74
7 0.47 2.50 1.00
8 0.58 12.50 0.57

centrality 0.53 0.49 3.32
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Descriptive analysis of network graphs
(A) Centrality

Closeness: Measures how quickly a node can interact with all other nodes
in the network. Nodes with high closeness centrality are efficient in spreading
information or influence across the network.

Betweenness: Measures the extent to which a node lies on the shortest paths
between other nodes in the network. Nodes with high betweenness centrality act
as bridges between different parts of the network.

Eigen-centrality: Measures the influence of a node based on the centrality of
its neighbors. Nodes with high eigenvector centrality are influential due to their
connections to other important nodes in the network.
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Descriptive analysis of network graphs
(A) Centrality
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Zachary’s karate club
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Descriptive analysis of network graphs
(A) Centrality
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Antonio Calcagǹı ∥ Lecture 1 Descriptive analysis of network graphs 12/17



Descriptive analysis of network graphs
(A) Centrality
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Zachary’s karate club

Eigen-centrality
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Descriptive analysis of network graphs
(B) Subgraphs and cliques

Cliques are complete subgraphs Hm of size m with a subset of vertices Vm ⊆ V
fully connected among them. They are computed using iterative algorithms (e.g.,
the Bron-Kerbosch algorithm).

Usually, cliques of larger sizes necessarily include cliques of smaller sizes. Instead,
a maximal clique is a clique that is not a subset of a larger clique.

Note: this analysis is run by first defining a notion of substructure (e.g., clique
of size 2), then looking to see if and how often it occurs in the graph.
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Descriptive analysis of network graphs
(B) Subgraphs and cliques
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Zachary’s karate club

clique 1 2 3 4 5

count 34 78 45 11 2

In the Zachary’s karate network we have

34 cliques of size 1 (nodes)

78 cliques of size 2 (pairs)

45 cliques of size 3 (triads)

11 cliques of size 4 (quadriads)

2 cliques of size 5
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Descriptive analysis of network graphs
(B) Subgraphs and cliques
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Zachary’s karate club

clique 2 3 4 5

count 11 21 2 2

In the Zachary’s karate network we have

11 maximal cliques of size 2

21 maximal cliques of size 3

2 maximal cliques of size 4

2 maximal cliques of size 5
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Descriptive analysis of network graphs
(B) Subgraphs and cliques
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Descriptive analysis of network graphs
(B) Subgraphs and cliques
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Descriptive analysis of network graphs
(B) Transitivity

The transitivity of a graph G reflects the degree to which vertices tend to cluster
together. It indicates how tightly knit the groups within the network are. High
transitivity suggests a network where nodes tend to create tightly connected
groups, while low transitivity indicates a more loosely connected structure.

The transitivity index can be computed locally and globally.
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Descriptive analysis of network graphs
(B) Transitivity

Global: It measures the overall level of clustering in the entire network as follows

CT =
3τ△(G)
τ3(G)

where

τ△(G) is the number of triangles in the graph
(A triangle is a set of three nodes where each node is directly connected to the other two nodes, forming a

closed loop)

τ3(G) is the number of triples in the graph
(A triple is a set of three nodes that can be either open or closed. If it is closed, then the triple forms a

triangle)
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Descriptive analysis of network graphs
(B) Transitivity

Local: It measures the tendency of a single node’s neighbors to be connected.
For a vertex v ∈ V, it is computed as

CT (v) =
2τ△(G|v)
τ3(G|v)

where

τ△(G|v) is the number of triangles in the graph containing v

τ3(G|v) is the number of triples in the graph for which two edges are both
incident to v
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Descriptive analysis of network graphs
(B) Transitivity
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Zachary’s karate club

In the Zachary’s karate network we have

CT = 0.25

which indicates a moderate level of clus-
tering within the network.

As Networks with higher transitivity tend
to have more pronounced community struc-
tures where nodes are more likely to be con-
nected within groups, CT = 0.25 suggests
that while there are some community struc-
tures or clusters within the network, they
are not as strongly defined as they would be
with higher transitivity values.
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Descriptive analysis of network graphs
(B) Graph partitioning

Graph partitioning refers to the task of finding subgraphs which are well-connected
(dense) and at the same time are well-separated (sparse) from the others. The
task is also known as community detection problem.
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Descriptive analysis of network graphs
(B) Graph partitioning

Graph partitioning refers to the task of finding subgraphs which are well-connected
(dense) and at the same time are well-separated (sparse) from the others. The
task is also known as community detection problem.

There are several techniques used for this task, most of them resembling an
agglomerative clustering on graphs:

Greedy-based methods

Louvain’s method

Spectral clustering

Block modeling partitioning

. . .
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Descriptive analysis of network graphs
(B) Graph partitioning

Both the Greedy and Louvain methods are popular iterative algorithms for de-
tecting communities in large networks by optimizing the modularity measure.
Particularly, the Louvain’s method is scalable, produces high-quality communi-
ties, and it is easy to implement.

Other algorithms are based on different rationales. For instance, the Spectral
clustering method seeks for agglomerates of subgraphs by inspecting the Lapla-
cian matrix L associated to the graph G.
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Descriptive analysis of network graphs
(B) Graph partitioning

The modularity Q(G) quantifies the density of edges within communities com-
pared to edges between communities:

Q(G) = 1

2Ne

∑
u,v∈V

(
a(u, v)− dudv

2Ne

)
χ(cu, cv )

where

a(u, v) is the adjacency value for the pair {u, v}
dx is the degree for the node x

χ(cu, cv ) is 1 if nodes u and v belong to the same community c, and 0
otherwise
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Descriptive analysis of network graphs
(B) Graph partitioning

The modularity Q(G) quantifies the density of edges within communities com-
pared to edges between communities:

Q(G) = 1

2Ne

∑
u,v∈V

(
a(u, v)− dudv

2Ne

)
χ(cu, cv )

As Q(G) ∈ [−1, 1],

Q(G) > 0 indicates a higher density of edges within communities than
expected by chance, suggesting a good community structure

Q(G) < 0 suggests that the network is less modular than expected (rare
in practice)

Q(G) = 0 indicates that the division into communities is no better than
chance

Antonio Calcagǹı ∥ Lecture 1 Descriptive analysis of network graphs 15/17



Descriptive analysis of network graphs
(B) Graph partitioning
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Descriptive analysis of network graphs
(B) Graph partitioning
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Descriptive analysis of network graphs
(B) Assortativity mixing

Assortativity is a measure of similarity that quantifies the tendency of nodes in
a network to connect to similar nodes. It helps understand whether nodes with
similar characteristics (e.g., degree, attributes) tend to connect more often than
expected by chance.

Assortativity coefficient for a network is calculated using the Pearson correlation
coefficient between the degrees of connected nodes. In this way, it quantifies
the level of homophyly of the graph, based on some vertex labeling or values
assigned to vertices.

Positive assortativity indicates that similar vertices tend to connect to each other.
Instead, negative assortativity (i.e., disassortativity) indicates that nodes with
dissimilar attributes tend to connect more often.
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Descriptive analysis of network graphs
(B) Assortativity mixing

Source: Chen, C., Liao, C., & Liu, Y. Y. (2023). Teasing out missing reactions in genome-scale metabolic networks
through hypergraph learning. Nature Communications, 14(1), 2375
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Descriptive analysis of network graphs
Summing up with a social network example

Degree of a node Number of friends or connections persons/nodes do have

Diameter Maximum number of acquaintanceships one person would need
to traverse to reach another person

Order of a network Number of individuals forming the social space or actually inter-
acting

Avg path length Between any two people, indicates how closely connected the
network is overall

Closeness A node with high closeness might be someone who can reach
most other individuals quickly through direct or short paths

Betweeness A node with high betweenness might be someone who connects
different groups or communities of individuals

Clique It might represent a group of friends where each person is friends
with every other person in the group
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Descriptive analysis of network graphs
Summing up with a social network example

Global transitivity A high global transitivity indicates that friends of a person are
likely to be friends with each other as well

Local transitivity It helps understand how likely it is for mutual friends of a person
to be friends with each other

Modularity It helps identify distinct groups of individuals who have more
connections within their group than with individuals outside their
group

Assortativity It might indicate whether individuals with many friends tend to
be friends with other popular individuals (positive assortativity)
or with less connected individuals (negative assortativity)
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