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Modeling network data

Descriptive statistics offer a static overview of network properties like centrality
measures and clustering coefficients but lack predictive power and the ability to
test hypotheses about network dynamics and structure.

They also do not incorporate node attributes or control for confounding factors,
limiting their utility for comprehensive network analysis.
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Modeling network data

In contrast, network models uncover underlying network processes, predict fu-
ture states, and allow for formal hypothesis testing. These models integrate
node attributes, simulate scenario changes, and reveal hidden structures such as
community patterns.

They provide actionable insights across fields like epidemiology and sociology,
making them essential for understanding and leveraging complex network dy-
namics.
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Modeling network data

Network models have a rich historical development. Sociologists and statisti-
cians made significant strides during the 1970s and 1980s, leading to the creation
of substantial databases and the introduction of exponential random graph mod-
els and related techniques by the early 1990s.

Physicists and computer scientists entered the field later but expanded the range
of models and methodologies. They focused on larger networks and more intri-
cate forms of data analysis, enhancing the field’s depth and breadth.
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Modeling network data

Amodel for a network graph G is a collection of graphsH = {G1, . . . ,Gg , . . . ,GG}
equipped with an indexed probability distribution Pθ (G) over H, i.e.:

{Pθ (G) ,G ∈ H,θ ∈ Θ}

The flexibility of the model is given by the choice of Pθ (G), with simplest models
letting Pθ (G) = U(G;α, β) and more complex models assuming Pθ (G) be a
member of the Exponential Family of distributions.

To further characterize the network model, usually constraints are used to define
the ensemble H, e.g. by fixing some graph properties like Nv or the degree
distribution {fd}d>0.
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Modeling network data

Didactically speaking, network models can be broadly classified into two classes:

Mathematical models

Statistical models

Antonio Calcagǹı ∥ Lecture 2 Modeling network data 6/15



Modeling network data

Didactically speaking, network models can be broadly classified into two classes:

Mathematical models: Define graph models from a theoretical and top-down
perspective, with a special emphasis on the class of reasonable models for many
empirical phenomena. Examples: Erdos-Renyi, Scale-free, Small-world.

Statistical models
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Modeling network data

Didactically speaking, network models can be broadly classified into two classes:

Mathematical models: Define graph models from a theoretical and top-down
perspective, with a special emphasis on the class of reasonable models for many
empirical phenomena. Examples: Erdos-Renyi, Scale-free, Small-world.

Statistical models: More closed to the statistical approach of modeling phe-
nomena, define graph models that are estimable from the data and tested by also
including exogenous variables or covariates. Examples: ERG, gERG, LS models.
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Mathematical network models
Random graph models

The standard Erdos-Renyi model specifies a collection H of graphs G = (V, E)
all of them with the same number of nodes Nv and edges Ne (constraint). In
addition, it assigns to each graph a uniform probability:

Pθ (G) =

(
Nv/2

Ne

)−1

In the Gilbert’s formulation H can be obtained by assigning e independently to
each distinct pair {u, v} with probability p ∈ (0, 1). It assigns to each graph a
Bernoulli probability:

Pθ (G) = pNe (1− p)(
Nv
2 )−Ne
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Mathematical network models
Random graph models

Instead of constraint the ensemble H by fixing N
(g)
v and N

(g)
e for g ∈ {1, . . . ,G},

one can constraint the degree sequence {d(1), . . . , d(Nv )} to be the same over the
graphs. This leads to a generalized random graph model.

There are also variants where the degree distribution {fd}d>0 is kept fixed over
the graphs instead of the degree sequence (e.g., Molly and Reed’s model).
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Mathematical network models
Random graph models

Instead of constraint the ensemble H by fixing N
(g)
v and N

(g)
e for g ∈ {1, . . . ,G},

one can constraint the degree sequence {d(1), . . . , d(Nv )} to be the same over the
graphs. This leads to a generalized random graph model.

There are also variants where the degree distribution {fd}d>0 is kept fixed over
the graphs instead of the degree sequence (e.g., Molly and Reed’s model).

Note: RGMs often serve as a way to define the null distribution in statistical
hypothesis tests in network data analysis.
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Mathematical network models
Graph models based on mechanisms

Beyond the family of RGMs, there exist network graph models which are built
so as to mimic certain real-world mechanisms, for instance by reproducing the
network clustering properties or certain growth dynamics.

Antonio Calcagǹı ∥ Lecture 2 Mathematical Network models 9/15



Mathematical network models
Graph models based on mechanisms

The scale-free model characterizes {fd} of a graph G using the Power-Law
distribution dG ∼ d−λ.

The intuition here is that a few nodes show a very high degree (hubs) and many
nodes show relatively few connections instead. These networks are dominated
by a small number of highly connected nodes (hubs) that play a crucial role in
information propagation and network resilience.
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Mathematical network models
Graph models based on mechanisms

Another well-known model is the preferential-attachment, which mimics the
rich get richer phenomenon. In this process, new nodes in a network preferentially
connect to existing nodes that already have a high degree. Nodes with higher
degrees attract more new connections, reinforcing their centrality in the network.

Preferential attachment results in the emergence of hubs, i.e. nodes with a
disproportionately high number of connections. These networks typically exhibit
scale-free characteristics.
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Mathematical network models
Graph models based on mechanisms

To formalize the six-degree separation phenomenon (i.e., most of the nodes are
six or fewer connections away from each other), the small-world model can
be used. The network is built from a regular grid where nodes are iteratively
clustered by progressively reducing the path lengths (rewiring).

Small-world networks model many real-world systems, facilitating studies on in-
formation diffusion, disease spread, and social interactions.
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Mathematical network models
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(D) Small-world
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Mathematical network models
Assess significance in network graphs

Although too simplistic for real statistical modeling, the graph models described
so far play a useful role in statistical hypothesis testing.

Suppose we have derived a graph Gobs from a set of observations and we are
interested in one or more of its characteristics η(G)obs like the number of triads
or the centrality. To establish if they are somehow unusual or unexpected (i.e.,
significant), we can simulate the null distribution of the characteristics being
studied and quantify their unlikeness:

Pη(G) (t) =
|{G ∈ H : η(G) ≤ t}|

|H|

As usual, comparing Gobs with this distribution allows for quantifying the evidence
against the null hypothesis.
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Mathematical network models
Assess significance in network graphs
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Zachary’s karate club

In the Zachary’s karate network we have
found a moderate level of clustering
CT = 0.25.

With no other comparable information
(e.g., networks of similar clubs), it is
difficult to conclude whether or not a
value of 0.25 is in any sense unexpected
given this type of network graphs.
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Mathematical network models
Assess significance in network graphs
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Null distribution of CT under the hypothe-
sis that Gobs has been drawn from a Erdos-
Renyi model with Nv = 34 and Ne = 78
(no. of replicates B = 1000). Note that
the dotted white line indicate the observed
CT = 0.25.
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Mathematical network models
Assess significance in network graphs
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Zachary’s karate club

In the Zachary’s karate network we have
found a moderate level of clustering
CT = 0.25.

We conclude that the Zachary’s net-
work shows markedly greater transitivity
than other random graphs of compara-
ble magnitude or connectivity.
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Statistical network models

Depending on the research question one is tacking, there are several statistical
models that can be adopted to study network graphs:

Exponential Random Graph (ERG): a kind of Generalized Linear Model
for network data

Network Block (NB): similarly to mixture models, they allow for directly
modeling subgroups or blocks

Latent Network (LN): allow for including latent variables in the graph
formation process

Temporal Network (TN): allow for modeling structures evolving over time
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Statistical network models

Depending on the research question one is tacking, there are several statistical
models that can be adopted to study network graphs:

Exponential Random Graph (ERG): a kind of Generalized Linear Model
for network data

Network Block (NB): similarly to mixture models, they allow for directly
modeling subgroups or blocks

Latent Network (LN): allow for including latent variables in the graph
formation process

Temporal Network (TN): allow for modeling structures evolving over time

→ We will be focusing on ERG models only
Note: It is a simple and basic introduction to the topic.
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Statistical network models
ERG model

Consider the lower triangular part of the adjacency matrix y = vec(Y△) for an
undirected graph G. This is a vector of Nv (Nv −1)/2 elements, with yij ∈ {0, 1}
indicating whether an edge exists between the vertices i and j .

The ERG models is of the form:

P(y = y ;θ) ∝ exp
(
θT
1 η(y) + θT

2 h(z, y)
)

where:

η(y) ∈ Rp is a p× 1 vector of network statistics (endogenous information)

h(z, y) ∈ Rp is a p × 1 vector of network attributes (exogenous
information) depending on both y and z

θ1 ∪ θ2 = θ ∈ R2p is the vector of model parameters
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Statistical network models
ERG model

P(y = y ;θ) ∝ exp
(
θT
1 η(y) + θT

2 h(z, y)
)

The quantity η(y) is built so as to summarize the (endogenous) complexity of
network structure, such as the number of edges, the number of k-stars, the
number of triangles.

Based on the Markovian assumption, the aim is to capture a form of local
dependency: two edges {i , j} and {i ′, j ′} with j ̸= j ′ are dependent whenever
they share a vertex v conditioned on the status of the other possible edges of
the graph (Markov graph).
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Statistical network models
ERG model

P(y = y ;θ) ∝ exp
(
θT
1 η(y) + θT

2 h(z, y)
)

Common types of endogenous network characteristics:

edge triangle 2-star (a) 2-star (b) 3-star

Antonio Calcagǹı ∥ Lecture 2 Statistical network models 14/15



Statistical network models
ERG model

P(y = y ;θ) ∝ exp
(
θT
1 η(y) + θT

2 h(z, y)
)

Common types of endogenous network characteristics:

triangle 2-triangle 3-triangle
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Statistical network models
ERG model

P(y = y ;θ) ∝ exp
(
θT
1 η(y) + θT

2 h(z, y)
)

There are several combinations of network characteristics that can b used to
capture local dependencies. Some of them have a direct interpretation such as:

Reciprocity (edge)

Transitivity, i.e. the friends of my best friends are also my friends
(triangles)

Popularity (stars)

Close-knit groups (k-triangles)
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Statistical network models
ERG model

P(y = y ;θ) ∝ exp
(
θT
1 η(y) + θT

2 h(z, y)
)

These structure can be counted by using weighted summary statistics:

AKSλ(y) =
Nv−1∑
k=2

(−1)k
τ⋆(k)
λk−2

alternating k-star

where

τ⋆(k) is the number of k-star forms in the observed network

λ scales the statistic (a higher value would increase the likelihood of
promoting ⋆-like structures)
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Statistical network models
ERG model

P(y = y ;θ) ∝ exp
(
θT
1 η(y) + θT

2 h(z, y)
)

These structure can be counted by using weighted summary statistics:

AKTλ(y) = 3τ△(1) +

Nv−2∑
k=2

(−1)k+1 τ△(k)

λk−1
alternating k-triangles

where

τ△(k) is the number of k-triangles forms in the observed network

λ scales the statistic (a higher value would increase the likelihood of
promoting △-like structures)
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Statistical network models
ERG model

P(y = y ;θ) ∝ exp
(
θT
1 η(y) + θT

2 h(z, y)
)

The quantity h(z, y) is built so as to summarize the exogenous effects of node-
level or edge-level covariates on the graph structure. The latter are also known
as dyadic effects.

We can include: continuous and categorical variables (main effects), homophily
or similarity (second-order effects), edge-matched covariates (dyadic effects),
and many others.
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Statistical network models
ERG model

P(y = y ;θ) ∝ exp (θNe)

The model with network statistic being defined only in terms of number of edges
often serves as a baseline model as it loses the Markov property (i.e., it is a
simple Bernoulli or Erdos-Renyi model). It can be used as starting point for
testing more complex models.
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Statistical network models
ERG model

P(y = y ;θ) ∝ exp
(
θT
1 η(y) + θT

2 h(z, y)
)

The model parameters θ are usually based on MCMC-based maximum likelihood
approximation. However, the inferential problem based on such approximation
does not guarantee asymptotic results for confidence intervals.
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Statistical network models
ERG model

P(y = y ;θ) ∝ exp
(
θT
1 η(y) + θT

2 h(z, y)
)

Finally, the goodness-of-fit of the ERG model can be assessed using simulation-
based diagnostics and discrepancy measures. We will see more about that during
the practical session.
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Statistical network models
ERG model

P(y = y ;θ) ∝ exp
(
θT
1 η(y) + θT

2 h(z, y)
)

The parameter interpretation is similar to the GLMs case using log-odds. The
coefficient θ is interpreted as that term’s contribution to the log-odds of an
individual tie, conditional on all other dyads remaining the same.

Suppose θ represents the parameter for a triangle statistic. The log-odds inter-
pretation would tell us how the presence of triangles in the network compares to
networks without triangles (reference configuration). A positive estimate indi-
cates a higher likelihood for that network configuration.
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Modeling network data
Summing up with a social network example

Erdos-Renyi model Modeling random friendships where each pair of individuals has a
small probability of being friend (usually used as baseline model)

Scale-free model Common in social media or citation networks, where a few nodes
(influencers) dominate the network’s structure

Small-world model Explaining the phenomenon where individuals are connected
through a small number of intermediaries

PA model Modeling the growth of citation networks where papers with more
citations attract more future citations (emergence of hubs)

ERG model Analyzing social networks to understand how network structure
emerges from individual-level interactions in a regression fashion

SB model Identifying cohesive communities within social networks based on
patterns of interactions or similarities in attributes

LS model Exploring hidden structures such as underlying preferences or af-
filiations that drive connection formation
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