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Goal of the presentation

The application of Generalized Maximum Entropy
Method of Estimation (GME) to crisp-input/fuzzy-output
regression model

Compare LS and GME approaches when empirical data are
corrupted by multicollinearity → monte carlo simulation

Show some results due to the features of GME approach in
variable selection procedure → case study
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Introduction

Fuzzy Set Theory (FST) is useful to:

handle with fuzzy or vague information

manage a particular source of uncertainty: fuzziness

Fuzzy statistics provides several models, methods and techniques
for fuzzy data:

fuzzy regression models

fuzzy principal component analysis

fuzzy random variables
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Introduction

GME is an approach for the estimation of parameters from
statistical models based on the information theory
It was firstly introduced by Golan in 1996 as extension of
Jaynes’s Maximum Entropy approach
It estimates statistical parameters by re-parametrizing these
as combination of discrete random variables
Several works showed the main advantages of GME:

No distributional errors assumptions are required
Robustness for a general class of error distributions
Excellent work with small samples and ill-posed design
matrices
Use of inequality constraints in the parameters estimation
procedure
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LS based model

[D’Urso, 2003]

Ŷ =


c =Xβc + ε

l = (Xβc)β l + 1αl + λ

r = (Xβc)βr + 1αr + ρ

Where:

X is a n × (m + 1) matrix of crisp independent variables

Y = {c, l, r} is a LR-fuzzy dependent variable

c, l, r are n × 1 vectors of fuzzy number’s parameters (centers,
left and right spreads)

βc , αl , αr , β l and βr are the model’s parameters

ε, λ and ρ are n × 1 vectors of error terms
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LS based model

Solutions are founded by minimizing the following distance
between fuzzy numbers:

∆(βc ,βl , βr , αl , αr ) =

‖c−Xβc‖2ω1 + ‖l− (Xβc)βl − 1αl‖2ω2+
‖r − (Xβc)βr − 1αr‖2ω3

where ω1, ω2 and ω3 are positive weights.
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GME based model

The first step is the re-parametrization of the model

Some basic examples
βcj = (z

c
k×1)

T · pck×1 ∀j = 1...m
εi = (z

ε
h×1)

T · pεh×1 ∀i = 1...n

Where:

z c and z ε are symmetric around zero support vectors (with 3 ≤ k ≤ 7
and 3 ≤ h ≤ 7)
pck,1 and p

ε
k,1 are vector of probabilities

Note that: the points of z can be chosen through a sensitivity analysis or the

three-sigma rule (for the case of zε).
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GME based model

Ŷ =



cn,1 =Xn,m(Z
c
m,mkp

c
mk,1) + (Z

ε
n,nhp

ε
nh,1)

ln,1 = [Xn,m(Z
c
m,mkp

c
mk,1)]((z

l
k,1)

Tplk,1) + 1n,1((z
αl

k,1)
Tpα

l

k,1) + (Z
λ
n,nHp

λ
nh,1)

rn,1 = [Xn,m(Z
c
m,mkp

c
mk,1)]((z

r
k,1)

Tprk,1) + 1n,1((z
αr

k,1)
Tpα

r

k,1) + (Z
ρ
n,nhp

ρ
nh,1)

Where:

βc = Zc
m,mkp

c
mk,1 ≡ (Im,m ⊗ zck,1) · (1m,1 ⊗ pck,1) β l = (zlk,1)

Tplk,1

ε = Zε
n,nhp

ε
nh,1 ≡ (In,n ⊗ zεh,1) · (1n,1 ⊗ pεh,1) αl = (zα

l

k,1)
Tpα

l

k,1

λ = Zλ
n,nhp

λ
nh,1 ≡ (In,n ⊗ zλh,1) · (1n,1 ⊗ pλh,1) βr = (zrk,1)

Tprk,1

ρ = Zρ
n,nhp

ρ
nh,1 ≡ (In,n ⊗ z

ρ
h,1) · (1n,1 ⊗ p

ρ
h,1) αr = (zα

r

k,1)
Tpα

r

k,1

Note that: ⊗ is the Kronecker-product while I is an identity matrix
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GME based model

The parameters are estimated by recovering the probabilities vectors
associated, maximizing the following functional:

H(pc ,pl ,pr ,pα
l

,pα
r

,pε,pλ,pρ) =

− (pcmk,1)T log(pcmk,1)− (plk,1)T log(plk,1)− (prk,1)T log(prk,1)

− (pα
l

k,1)
T log(pα

l

k,1)− (pα
r

k,1)
T log(pα

r

k,1)− (pεnh,1)T log(pεnh,1)

− (pλnh,1)T log(pλnh,1)− (pρnh,1)
T log(pρnh,1)
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GME based model

Subject to the following normalization constraints:

(i) (Im,m ⊗ 1k,1)
T (pcmk,1) = 1m,1

(ii) (plk,1)
T · 1k,1 = 1

(iii) (prk,1)
T · 1k,1 = 1

(iv) (pα
l

k,1)
T · 1k,1 = 1

(v) (pα
r

k,1)
T · 1k,1 = 1

(vi) (In,n ⊗ 1h,1)
T (pεnh,1) = 1n,1

(vii) (In,n ⊗ 1h,1)
T (pλnh,1) = 1n,1

(viii) (In,n ⊗ 1h,1)
T (pρnh,1) = 1n,1

and the three consistency constraints represented by the equations of the
regression model for the centers and left/right spreads.

Note that: the problem is solved by NLP optimization techniques.
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Experimental scenario

In order to compare GME and LS approaches we set up two experiments:

GC (general case) → without multicollinearity in the design matrix

IC (ill-posed case) → by increasing the multicollinearity in the design
matrix

The results were evaluated by considering:

the mean values of the regression coefficients (as average of the Monte
Carlo replications) and their standard deviations

the relative bias: RB = (E(θ̂)− θ)/θ
the RMSE on the predicted values

the relative efficiency : RE(θ̂gme , θ̂LS) = MSE(θ̂LS)/MSE(θ̂gme)
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Experimental scenario

Xn,m+1 ∼ U(1, 20)
n = 25, n = 50 and m = 3

βc = [−1.5,−0.2, 1.6, 2.3], β l = 1.7, βr = 0.9, αl = −4.2, αr = −2.1
εn,1 ∼ N(0, 1), λn,1 ∼ N(0, 1) and ρn,1 ∼ N(0, 1)
z = [−100,−50, 0, 50, 100] and v = [−3σ, 0, 3σ]
second variable corrupted with the third variable:
xnewm = ζ · xm+1 + (1− ζ) · xm
three level of multicollinearity: ζ = 0.9, ζ = 0.93 and ζ = 0.95

1000 simulations
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Some Results

LS for n=25

ζ = 0 ζ = 0.9 ζ = 0.93 ζ = 0.95

βc1 -0.200 -0.200 - -
SE(βc1 ) 0.043 0.043 - -
βc2 1.601 1.596 - -
SE(βc2 ) 0.042 0.429 - -
βc3 2.301 2.303 - -
SE(βc3 ) 0.041 0.388 - -
βl 1.699 1.700 - -
SE(βl ) 0.014 0.010 - -
βr 0.899 0.900 - -
SE(βr ) 0.014 0.010 - -
RMSE(c) 0.920 0.920 - -
RMSE(l) 1.811 1.811 - -
RMSE(r) 1.246 1.246 - -
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Some Results

GME for n=25

ζ = 0 ζ = 0.9 ζ = 0.93 ζ = 0.95

βc1 -0.199 -0.199 -0.199 -0.199
SE(βc1 ) 0.044 0.044 0.043 0.043
βc2 1.599 1.589 1.949 1.949
SE(βc2 ) 0.041 0.420 0.019 0.019
βc3 2.299 2.309 1.949 1.949
SE(βc3 ) 0.041 0.379 0.019 0.019
βl 1.700 1.700 1.700 1.700
SE(βl ) 0.014 0.010 0.010 0.010
βr 0.900 0.900 0.900 0.900
SE(βr ) 0.014 0.010 0.010 0.010
RMSE(c) 0.914 0.914 0.932 0.932
RMSE(l) 1.799 1.799 1.834 1.834
RMSE(r) 1.243 1.243 1.263 1.263
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Some Results

Relative Bias for n=25

LS

ζ = 0 ζ = 0.9 ζ = 0.93 ζ = 0.95

βc1 0.002 0.001 - -
βc2 0.000 -0.002 - -
βc3 0.000 0.001 - -
βl -0.001 0.000 - -
βr -0.001 0.000 - -

GME

βc1 -0.003 -0.003 -0.004 -0.004
βc2 -0.001 -0.007 0.218 0.218
βc3 0.000 0.004 -0.152 -0.152
βl 0.000 0.000 0.000 0.000
βr 0.000 0.000 0.000 0.000
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Some Results

Relative Efficiency between LS and GME

n=25

ζ = 0 ζ = 0.9 ζ = 0.93 ζ = 0.95

c 1.0134 1.0132 - -
l 1.0125 1.0124 - -
r 1.0056 1.0055 - -
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Comments

GC condition: GME and LS are overlapped (ζ = 0)

slightly differences in terms of RMSEs and RE also for
0.4 ≤ ζ ≤ 0.8

IC condition: GME works better than LS

when corruption of X is strong mean values of β’s are stable
and SE(β)’s tend to be low

if Xj and Xj+1 are corrupted variables βXj and βXj+1 are equal
to (βtrueXj

+ βtrueXj+1
)/2

RMSEs are stable and small
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Purposes

GME approach was applied in order to evaluate its usefulness in:

variables selection procedure through the measurement of the
reduction of uncertainty with the normalized entropy index

By considering βj = (zj)Tpj its normalized entropy is:

S(pj) =
−pTj log(pj)
log(k)

with: 0 ≤ S(pj) ≤ 1

The variable is significant when S(pj) < 0.99

model’s goodness of fit evaluation

R2pseudo = 1−
−
∑m

j pj log(pj)

m · log(k) with: 0 ≤ R2pseudo ≤ 1
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Data

Dataset used [Coppi et al., 2006]

Fuzzy dependent variable:

Yc,l ,r=concentration of carbon monoxide

Crisp independent variables:

X1=temperature
X2=relative humidity
X3=atmospheric pressure
X4=rain
X5=radiation
X6=wind speed
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Results

GME regression parameters

X1 X2 X3 X4 X5 X6
βc 0.248 0.520 -0.252 -0.407 -0.119 -0.650
β l 0.630
βr 0.918

Normalized Entropy and Goodness of fit indices

X1 X2 X3 X4 X5 X6
Sp(pc) 0.991 0.836 0.999 0.974 0.998 0.788
Sp(pl) 0.950
Sp(pr ) 0.688
R2pseudo 0.605
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Results

Probability distributions for the z vectors
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Comments

Significant variables: X2 (relative humidity), X4 (rain) and X6 (wind
speed)

Their probabilities distribution are far away from uniformity (due to the
reduction of uncertainty)

The global fit of the model is good and it explains about 60% of the
overall information stored in the empirical data
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Conclusion and Remarks

GME works with ill-posed problems better than LS

By using GME researchers can introduce researcher’s
knowledge in the estimation procedure

GME provides a useful variables selection procedure without
assuming an inferential framework
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Conclusion and Remarks

GME works with ill-posed problems better than LS

By using GME researchers can introduce researcher’s
knowledge in the estimation procedure

GME provides a useful variables selection procedure without
assuming an inferential framework

Thank you for attention!
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