Introduction	Fuzzy regression model	Monte Carlo simulation	Case Study	Conclusions	References

A Generalized Maximum Entropy (GME) approach to crisp-input/fuzzy-output regression model

Antonio Calcagnì

Department of Psychology and Cognitive Science

University of Trento (Italy)

SIS 2013 Statistical Conference "Advanced in Latent Variables. Methods, Models and Applications" University of Brescia, June, 19 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Introduction	Fuzzy regression model	Monte Carlo simulation	Case Study	Conclusions	References

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

My Agenda

Introduction

- Fuzzy Set Theory and Statistics
- Generalized Maximum Entropy Approach
- **Fuzzy regression model**
 - LS crisp-input/fuzzy-output regression model
 - GME crisp-input/fuzzy-output regression model

Monte Carlo simulation

- Experimental scenario
- Some Results

Case Study

- Purposes
- Data
- Results

Introduction Fuzzy regression model Monte Carlo simulation Case Study Conclusions References 00 000000 00000 00000

Goal of the presentation

- The application of Generalized Maximum Entropy Method of Estimation (GME) to crisp-input/fuzzy-output regression model
- Compare LS and GME approaches when empirical data are corrupted by multicollinearity → monte carlo simulation
- Show some results due to the features of GME approach in variable selection procedure → case study

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つく⊙

Introduction ●○	Fuzzy regression model	Monte Carlo simulation	Case Study	Conclusions	References
	- 1				

Introduction

Fuzzy Set Theory (FST) is useful to:

- handle with fuzzy or vague information
- manage a particular source of uncertainty: fuzziness

Fuzzy statistics provides several *models*, *methods* and *techniques* for fuzzy data:

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- fuzzy regression models
- fuzzy principal component analysis
- fuzzy random variables

Introduction ○●	Fuzzy regression model	Monte Carlo simulation	Case Study	Conclusions	References
Introdu	iction				

- GME is an approach for the estimation of parameters from statistical models based on the **information theory**
- It was firstly introduced by Golan in 1996 as extension of Jaynes's Maximum Entropy approach
- It estimates statistical **parameters** by re-parametrizing these **as combination of discrete random variables**
- Several works showed the main **advantages** of GME:
 - No distributional errors assumptions are required
 - Robustness for a general class of error distributions
 - Excellent work with small samples and ill-posed design matrices
 - Use of inequality constraints in the parameters estimation procedure

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Introduction	Fuzzy regression model ●೦೦೦೦೦	Monte Carlo simulation	Case Study	Conclusions	References

LS based model

[D'Urso, 2003]

$$\hat{Y} = egin{cases} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin{aligned}$$

Where:

 \boldsymbol{X} is a $n \times (m+1)$ matrix of crisp independent variables

$\boldsymbol{Y} = \{\boldsymbol{c}, \boldsymbol{l}, \boldsymbol{r}\}$ is a LR-fuzzy dependent variable

c, l, r are $n \times 1$ vectors of fuzzy number's parameters (centers, left and right spreads)

 β^{c} , α^{l} , α^{r} , β^{l} and β^{r} are the **model's parameters**

 $oldsymbol{\epsilon}$, $oldsymbol{\lambda}$ and $oldsymbol{
ho}$ are n imes 1 vectors of error terms

Introduction	Fuzzy regression model ○●○○○○	Monte Carlo simulation	Case Study	Conclusions	References
LS bas	ed model				

Solutions are founded by minimizing the following distance between fuzzy numbers:

$$egin{aligned} \Delta(oldsymbol{eta}^c,oldsymbol{eta}^\prime,oldsymbol{eta}^r,lpha^\prime,lpha^r) = \ & \|oldsymbol{c}-oldsymbol{X}oldsymbol{eta}^c\|^2\omega_1+\|oldsymbol{l}-(oldsymbol{X}oldsymbol{eta}^c)oldsymbol{eta}^\prime-oldsymbol{1}lpha^\prime\|^2\omega_2+\ & \|oldsymbol{r}-(oldsymbol{X}oldsymbol{eta}^c)oldsymbol{eta}^r-oldsymbol{1}lpha^r\|^2\omega_3 \end{aligned}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ □臣 □ のへで

where ω_1 , ω_2 and ω_3 are positive weights.

Introduction	Fuzzy regression model ००●०००	Monte Carlo simulation	Case Study	Conclusions	References
GME b	ased model				

The first step is the re-parametrization of the model

Some basic examples

$$\begin{aligned} \boldsymbol{\beta}_{j}^{c} &= (\boldsymbol{z}_{k\times1}^{c})^{T} \cdot \boldsymbol{p}_{k\times1}^{c} \qquad \forall j = 1...m \\ \boldsymbol{\epsilon}_{i} &= (\boldsymbol{z}_{h\times1}^{\epsilon})^{T} \cdot \boldsymbol{p}_{h\times1}^{c} \qquad \forall i = 1...n \end{aligned}$$

Where:

 z^c and z^ϵ are symmetric around zero ${\bf support \ vectors}$ (with $3 \le k \le 7$ and $3 \le h \le 7$)

$oldsymbol{p}_{k,1}^c$ and $oldsymbol{p}_{k,1}^\epsilon$ are vector of probabilities

Note that: the points of z can be chosen through a sensitivity analysis or the three-sigma rule (for the case of z^{ϵ}).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Introduction	Fuzzy regression model 000●00	Monte Carlo simulation	Case Study	Conclusions	References

$$\hat{\mathbf{Y}} = \begin{cases} \boldsymbol{c}_{n,1} = \boldsymbol{X}_{n,m}(\boldsymbol{Z}_{m,mk}^{c}\boldsymbol{p}_{mk,1}^{c}) + (\boldsymbol{Z}_{n,nh}^{\epsilon}\boldsymbol{p}_{nh,1}^{\epsilon}) \\\\ \boldsymbol{l}_{n,1} = [\boldsymbol{X}_{n,m}(\boldsymbol{Z}_{m,mk}^{c}\boldsymbol{p}_{mk,1}^{c})]((\boldsymbol{z}_{k,1}^{\prime})^{\top}\boldsymbol{p}_{k,1}^{\prime}) + \boldsymbol{1}_{n,1}((\boldsymbol{z}_{k,1}^{\alpha^{\prime}})^{\top}\boldsymbol{p}_{k,1}^{\alpha^{\prime}}) + (\boldsymbol{Z}_{n,nH}^{\lambda}\boldsymbol{p}_{nh,1}^{\lambda}) \\\\ \boldsymbol{r}_{n,1} = [\boldsymbol{X}_{n,m}(\boldsymbol{Z}_{m,mk}^{c}\boldsymbol{p}_{mk,1}^{c})]((\boldsymbol{z}_{k,1}^{\prime})^{\top}\boldsymbol{p}_{k,1}^{\prime}) + \boldsymbol{1}_{n,1}((\boldsymbol{z}_{k,1}^{\alpha^{\prime}})^{\top}\boldsymbol{p}_{k,1}^{\alpha^{\prime}}) + (\boldsymbol{Z}_{n,nH}^{\lambda}\boldsymbol{p}_{nh,1}^{\lambda}) \end{cases}$$

Where:

$$\begin{split} \boldsymbol{\beta}^{c} &= \boldsymbol{Z}_{n,mk}^{c} \boldsymbol{p}_{mk,1}^{c} \equiv (\boldsymbol{I}_{m,m} \otimes \boldsymbol{z}_{k,1}^{c}) \cdot (\boldsymbol{1}_{m,1} \otimes \boldsymbol{p}_{k,1}^{c}) \qquad \boldsymbol{\beta}^{l} = (\boldsymbol{z}_{k,1}^{l})^{\top} \boldsymbol{p}_{k,1}^{l} \\ \boldsymbol{\epsilon} &= \boldsymbol{Z}_{n,nh}^{\epsilon} \boldsymbol{p}_{nh,1}^{h} \equiv (\boldsymbol{I}_{n,n} \otimes \boldsymbol{z}_{h,1}^{\epsilon}) \cdot (\boldsymbol{1}_{n,1} \otimes \boldsymbol{p}_{h,1}^{\epsilon}) \qquad \boldsymbol{\alpha}^{l} = (\boldsymbol{z}_{k,1}^{\alpha'})^{\top} \boldsymbol{p}_{k,1}^{\alpha'} \\ \boldsymbol{\lambda} &= \boldsymbol{Z}_{n,nh}^{\lambda} \boldsymbol{p}_{nh,1}^{\lambda} \equiv (\boldsymbol{I}_{n,n} \otimes \boldsymbol{z}_{h,1}^{\lambda}) \cdot (\boldsymbol{1}_{n,1} \otimes \boldsymbol{p}_{h,1}^{\lambda}) \qquad \boldsymbol{\beta}^{r} = (\boldsymbol{z}_{k,1}^{r})^{\top} \boldsymbol{p}_{k,1}^{r} \\ \boldsymbol{\rho} &= \boldsymbol{Z}_{n,nh}^{\rho} \boldsymbol{p}_{nh,1}^{\rho} \equiv (\boldsymbol{I}_{n,n} \otimes \boldsymbol{z}_{h,1}^{\rho}) \cdot (\boldsymbol{1}_{n,1} \otimes \boldsymbol{p}_{h,1}^{\rho}) \qquad \boldsymbol{\alpha}^{r} = (\boldsymbol{z}_{k,1}^{\alpha'})^{\top} \boldsymbol{p}_{k,1}^{\alpha'} \end{aligned}$$

Note that: \otimes is the Kronecker-product while $oldsymbol{I}$ is an identity matrix

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q @

Introduction	Fuzzy regression model ○○○○●○	Monte Carlo simulation	Case Study	Conclusions	References

GME based model

The parameters are estimated by recovering the probabilities vectors associated, **maximizing** the following functional:

$$\begin{aligned} \mathcal{H}(\boldsymbol{p}^{c},\boldsymbol{p}^{\prime},\boldsymbol{p}^{r},\boldsymbol{p}^{\alpha^{\prime}},\boldsymbol{p}^{\alpha^{\prime}},\boldsymbol{p}^{\epsilon},\boldsymbol{p}^{\lambda},\boldsymbol{p}^{\rho}) &= \\ &-(\boldsymbol{p}^{c}_{nk,1})^{T}\log(\boldsymbol{p}^{c}_{nk,1}) - (\boldsymbol{p}^{\prime}_{k,1})^{T}\log(\boldsymbol{p}^{\prime}_{k,1}) - (\boldsymbol{p}^{\prime}_{k,1})^{T}\log(\boldsymbol{p}^{r}_{k,1}) \\ &-(\boldsymbol{p}^{\alpha^{\prime}}_{k,1})^{T}\log(\boldsymbol{p}^{\alpha^{\prime}}_{k,1}) - (\boldsymbol{p}^{\alpha^{\prime}}_{k,1})^{T}\log(\boldsymbol{p}^{\alpha^{\prime}}_{k,1}) - (\boldsymbol{p}^{\epsilon}_{nh,1})^{T}\log(\boldsymbol{p}^{\epsilon}_{nh,1}) \\ &-(\boldsymbol{p}^{\lambda}_{nh,1})^{T}\log(\boldsymbol{p}^{\lambda}_{nh,1}) - (\boldsymbol{p}^{\rho}_{nh,1})^{T}\log(\boldsymbol{p}^{\rho}_{nh,1}) \end{aligned}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Introduction	Fuzzy regression model 00000●	Monte Carlo simulation	Case Study	Conclusions	References
GME b	ased model				

Subject to the following normalization constraints:

(i)
$$(I_{m,m} \otimes \mathbf{1}_{k,1})^T (\mathbf{p}_{mk,1}^c) = \mathbf{1}_{m,1}$$

(ii) $(\mathbf{p}_{k,1}^l)^T \cdot \mathbf{1}_{k,1} = \mathbf{1}$
(iii) $(\mathbf{p}_{k,1}^c)^T \cdot \mathbf{1}_{k,1} = \mathbf{1}$
(iv) $(\mathbf{p}_{k,1}^{\alpha'})^T \cdot \mathbf{1}_{k,1} = \mathbf{1}$
(v) $(\mathbf{p}_{k,1}^{\alpha'})^T \cdot \mathbf{1}_{k,1} = \mathbf{1}$
(vi) $(I_{n,n} \otimes \mathbf{1}_{h,1})^T (\mathbf{p}_{hh,1}^c) = \mathbf{1}_{n,1}$
(vii) $(I_{n,n} \otimes \mathbf{1}_{h,1})^T (\mathbf{p}_{hh,1}^{\lambda}) = \mathbf{1}_{n,1}$
(viii) $(I_{n,n} \otimes \mathbf{1}_{h,1})^T (\mathbf{p}_{hh,1}^{\lambda}) = \mathbf{1}_{n,1}$

and the three **consistency constraints** represented by the equations of the regression model for the centers and left/right spreads.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Note that: the problem is solved by **NLP optimization techniques**.

Introduction	Fuzzy regression model	Monte Carlo simulation	Case Study	Conclusions	References
		•000000			

Experimental scenario

In order to compare GME and LS approaches we set up two experiments:

- GC (general case) \rightarrow without multicollinearity in the design matrix
- IC (ill-posed case) → by increasing the multicollinearity in the design matrix

The results were evaluated by considering:

• the *mean values* of the regression coefficients (as average of the Monte Carlo replications) and their *standard deviations*

- the relative bias: $RB = (E(\hat{\theta}) \theta)/\theta$
- the *RMSE* on the predicted values
- the relative efficiency: $RE(\hat{\theta}_{gme}, \hat{\theta}_{LS}) = MSE(\hat{\theta}_{LS})/MSE(\hat{\theta}_{gme})$

Introduction

Fuzzy regression model

Monte Carlo simulation

Case Study

Conclusions

*ロ * * @ * * E * * E * の < @

References

Experimental scenario

- $X_{n,m+1} \sim U(1,20)$
- n = 25, n = 50 and m = 3

• $\beta^{c} = [-1.5, -0.2, 1.6, 2.3], \beta^{l} = 1.7, \beta^{r} = 0.9, \alpha^{l} = -4.2, \alpha^{r} = -2.1$

•
$$\boldsymbol{\epsilon}_{n,1} \sim N(0,1)$$
, $\boldsymbol{\lambda}_{n,1} \sim N(0,1)$ and $\boldsymbol{\rho}_{n,1} \sim N(0,1)$

•
$$\boldsymbol{z} = [-100, -50, 0, 50, 100]$$
 and $\boldsymbol{v} = [-3\sigma, 0, 3\sigma]$

- second variable corrupted with the third variable: $\boldsymbol{x}_m^{new} = \zeta \cdot \boldsymbol{x}_{m+1} + (1 - \zeta) \cdot \boldsymbol{x}_m$
- three level of multicollinearity: $\zeta = 0.9$, $\zeta = 0.93$ and $\zeta = 0.95$
- 1000 simulations

Introduction	Fuzzy regression model	Monte Carlo simulation	Case Study	Conclusions	Reference

LS for n=25

	$\zeta=0$	$\zeta=0.9$	$\zeta=0.93$	$\zeta=0.95$
β_1^c	-0.200	-0.200	-	-
$SE(\beta_1^c)$	0.043	0.043	-	-
β_2^c	1.601	1.596	-	-
$S\overline{E}(\beta_2^c)$	0.042	0.429	-	-
β_3^c	2.301	2.303	-	-
$SE(\beta_3^c)$	0.041	0.388	-	-
β'	1.699	1.700	-	-
$SE(\beta')$	0.014	0.010	-	-
β^r	0.899	0.900	-	-
$SE(\beta^r)$	0.014	0.010	-	-
RMSE(c)	0.920	0.920	-	-
RMSE(l)	1.811	1.811	-	-
RMSE(r)	1.246	1.246	-	-

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < の < で</p>

Introduction	Fuzzy regression model	Monte Carlo simulation	Case Study	Conclusions	Refer
		000000			

GME for n=25

	$\zeta=0$	$\zeta=0.9$	$\zeta=0.93$	$\zeta=0.95$
β_1^c	-0.199	-0.199	-0.199	-0.199
$SE(\beta_1^c)$	0.044	0.044	0.043	0.043
β_2^c	1.599	1.589	1.949	1.949
SĒ(β ₂)	0.041	0.420	0.019	0.019
β_3^c	2.299	2.309	1.949	1.949
$SE(\beta_3^c)$	0.041	0.379	0.019	0.019
β'	1.700	1.700	1.700	1.700
$SE(\beta')$	0.014	0.010	0.010	0.010
β^r	0.900	0.900	0.900	0.900
$SE(\beta^r)$	0.014	0.010	0.010	0.010
RMSE(c)	0.914	0.914	0.932	0.932
RMSE(l)	1.799	1.799	1.834	1.834
RMSE(r)	1.243	1.243	1.263	1.263

ences

Introduction	Fuzzy regression model	Monte Carlo simulation	Case Study	Conclusions	Reference
		0000000			

Relative Bias for n=25

	$\zeta=0$	$\zeta=$ 0.9	$\zeta=0.93$	$\zeta=0.95$
β_1^c	0.002	0.001	-	-
β_2^c	0.000	-0.002	-	-
β_3^c	0.000	0.001	-	-
$\beta^{\overline{l}}$	-0.001	0.000	-	-
β^r	-0.001	0.000	-	-
β_1^c	-0.003	-0.003	-0.004	-0.004
β_2^{c}	-0.001	-0.007	0.218	0.218
$\beta_3^{\overline{c}}$	0.000	0.004	-0.152	-0.152
$\beta^{\tilde{l}}$	0.000	0.000	0.000	0.000
β^r	0.000	0.000	0.000	0.000
	$ \begin{array}{c} \beta_1^c \\ \beta_2^c \\ \beta_3^c \\ \beta^r \\ \beta^r \\ \beta_1^c \\ \beta_2^c \\ \beta_3^r \\ \beta_1^c \\ \beta_3^r \\ \beta^r \end{array} $	$\begin{array}{c} \zeta = 0 \\ \beta_1^c & 0.002 \\ \beta_2^c & 0.000 \\ \beta_3^d & 0.000 \\ \beta_3^I & -0.001 \\ \beta_1^r & -0.001 \\ \beta_1^r & -0.003 \\ \beta_2^c & -0.001 \\ \beta_2^c & -0.001 \\ \beta_3^c & 0.000 \\ \beta_1^I & 0.000 \\ \beta_1^r & 0.000 \end{array}$	$\begin{array}{c c} \zeta = 0 & \zeta = 0.9 \\ \hline \beta_1^c & 0.002 & 0.001 \\ \beta_2^c & 0.000 & -0.002 \\ \hline \beta_3^c & 0.000 & 0.001 \\ \hline \beta_1^I & -0.001 & 0.000 \\ \hline \beta_r^I & -0.001 & 0.000 \\ \hline \beta_1^c & -0.003 & -0.003 \\ \hline \beta_2^c & -0.001 & -0.007 \\ \hline \beta_3^c & 0.000 & 0.004 \\ \hline \beta_1^I & 0.000 & 0.000 \\ \hline \beta_r^I & 0.000 & 0.000 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

Introduction	Fuzzy regression model	Monte Carlo simulation ○○○○○●○	Case Study	Conclusions	References

Relative Efficiency between LS and GME

		$\zeta=0$	$\zeta=0.9$	$\zeta=0.93$	$\zeta=0.95$
	c	1.0134	1.0132	-	-
n=25	l	1.0125	1.0124	-	-
	\boldsymbol{r}	1.0056	1.0055	-	-

・ロト・日本・日本・日本・日本・日本・日本

Introduction	Fuzzy regression model	Monte Carlo simulation 000000●	Case Study	Conclusions	References
Comme	ents				

- **GC condition**: GME and LS are overlapped ($\zeta = 0$)
 - slightly differences in terms of RMSEs and RE also for $0.4 \leq \zeta \leq 0.8$
- IC condition: GME works better than LS
 - when corruption of X is strong mean values of β 's are stable and SE(β)'s tend to be low
 - if X_j and X_{j+1} are corrupted variables β_{X_j} and $\beta_{X_{j+1}}$ are equal to $(\beta_{X_j}^{true} + \beta_{X_{j+1}}^{true})/2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

• RMSEs are stable and small

Introduction	Fuzzy regression model	Monte Carlo simulation	Case Study ●○○○○	Conclusions	References
Purpos	ses				

GME approach was applied in order to evaluate its usefulness in:

• **variables selection procedure** through the measurement of the *reduction of uncertainty* with the *normalized entropy index*

By considering $\beta_j = (z_j)^T p_j$ its normalized entropy is:

$$S(\boldsymbol{p}_j) = rac{-\boldsymbol{p}_j^T \log(\boldsymbol{p}_j)}{\log(k)}$$
 with: $0 \le S(\boldsymbol{p}_j) \le 1$

The variable is significant when $S(p_j) < 0.99$

model's goodness of fit evaluation

$$R_{pseudo}^2 = 1 - \frac{-\sum_j^m p_j \log(p_j)}{m \cdot \log(k)} \quad \text{with:} \quad 0 \le R_{pseudo}^2 \le 1$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

ntroduction	Fuzzy regression model	Monte Carlo simulation	Case Study	Conclusions	References
			00000		

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Data

Dataset used [Coppi et al., 2006]

- Fuzzy dependent variable:
 - Y_{c,l,r}=concentration of carbon monoxide
- Crisp independent variables:
 - X₁=temperature
 - X₂=relative humidity
 - X₃=atmospheric pressure
 - X₄=rain
 - X₅=radiation
 - X₆=wind speed

Introduction	Fuzzy regression model	Monte Carlo simulation	Case Study ○○●○○	Conclusions	References
_					

Results

GME regression parameters

	$oldsymbol{X}_1$	$oldsymbol{X}_2$	$oldsymbol{X}_{3}$	$oldsymbol{X}_4$	$oldsymbol{X}_5$	$oldsymbol{X}_6$
$oldsymbol{eta}^{c}$	0.248	0.520	-0.252	-0.407	-0.119	-0.650
eta'	0.630					
β^r	0.918					

Normalized Entropy and Goodness of fit indices

	$oldsymbol{X}_1$	X_2	$oldsymbol{X}_{3}$	$oldsymbol{X}_4$	$oldsymbol{X}_5$	$oldsymbol{X}_6$
$Sp(p^{c})$	0.991	0.836	0.999	0.974	0.998	0.788
Sp(p')	0.950					
$Sp(p^r)$	0.688					
R^2_{pseudo}	0.605					

Introduction	Fuzzy regression model	Monte Carlo simulation	Case Study	Conclusions	References
			00000		

Results

Probability distributions for the *z* vectors

Introduction	Fuzzy regression model	Monte Carlo simulation	Case Study 0000●	Conclusions	References

Comments

- Significant variables: X₂ (*relative humidity*), X₄ (*rain*) and X₆ (*wind speed*)
- Their probabilities distribution are far away from uniformity (due to the reduction of uncertainty)
- The global fit of the model is good and it explains about 60% of the overall information stored in the empirical data

*ロ * * @ * * E * * E * の < @

Introduction

Fuzzy regression model

Monte Carlo simulation

Case Study

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つく⊙

References

Conclusion and Remarks

- GME works with ill-posed problems better than LS
- By using GME researchers can introduce researcher's knowledge in the estimation procedure
- GME provides a useful variables selection procedure without assuming an inferential framework

Introduction

Fuzzy regression model

Monte Carlo simulation

Case Study

Conclusions

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

References

Conclusion and Remarks

- GME works with ill-posed problems better than LS
- By using GME researchers can introduce researcher's knowledge in the estimation procedure
- GME provides a useful variables selection procedure without assuming an inferential framework

Thank you for attention!

Introduction	Fuzzy regression model	Monte Carlo simulation	Case Study	Conclusions	References

Coppi, R., D'Urso, P., Giordani, P., and Santoro, A. (2006). Least squares estimation of a linear regression model with Ir fuzzy response. *Computational Statistics & Data Analysis*, 51(1):267–286.

D'Urso, P. (2003).

Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data. *Computational Statistics & Data Analysis*, 42(1):47–72.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つく⊙