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Introduction

GLMs can suffer from misspecifications due to:

overdispersion

heteroscedasticity

nuisance parameters

→ hypothesis testing is often problematic in these conditions
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Introduction

Permutation tests offer a way out.

With respect to the parametric counterpart, they:
require less assumptions
provide exact control of Type I error
asymptotically converge to the parametric tests
easily work in the multivariate case (e.g., multiplicity correction)

Some limitations:
presence of continuous confounders as nuisance
(observations are no longer exchangeable)
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Introduction
A novel solution for GLMs with continuous nuisance confounders:
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Sign-flipping score

Let (y1, . . . , yn) be iid random realizations from (Y1, . . . ,Yn) with density (exp. family):

f (yi |θi ) = h(yi , τ) exp

(
yiθi − b(θi )

ai (τ)

)
Then:

g
(
E[Yi ]

)
= b′(θi ) = g−1(xiβ + ziγ) zi continuous confounder

VAR[Yi ] = b′′(θi )ai (τ)

Sign-flipping effective score test in a nutshell :

H0 : β = β0|γ̂

s∗γ̂ =
n∑

i=1

±
(
∂

∂β
log f (Yi |β, γ)|β=β0 − Ĵ T

xz Ĵ −1
zz

∂

∂γ
log f (Yi |β, γ)|β=β0

)
J() block of the observed Fisher information under H0
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= b′(θi ) = g−1(xiβ + ziγ) zi continuous confounder
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Sign-flipping effective score test in a nutshell :

robust against misspecification of the model

better control of type I error for small and large sample size
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Permutation confidence intervals

Few studies have investigated the problem of how constructing permutation
confidence intervals (pCIs).

Some examples:

Pesarin & Salmaso (2010): grid-search algorithm

Garthwaite & Buckland (1992): stochastic Robbins-Monro algorithm

Pauly, Asendorf, & Konietschke (2014): permutation-based range preserving CIs
for the Behrens-Fisher problem (inference for the AUC)
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Related problems in computing pCIs:

constructing the search space for β|H0

multidimensional H(1:p)
0 treated as set of univariate H(1)

0 , . . . ,H(p)
0

multidimensional case H(1:p)
0 can be computationally prohibitive
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Random-search grid algorithm

In general:

βl and βu computed separately

{(βl, βu) ∈ Θ : p-value = α}

Our idea: algorithm for pCIs based on sign-flipping score test:

given β(1)
0 , . . . , β

(M)
0 , a set of separated hypotheses are tested:

H0 : β0 = β
(m)
0 (m = 1, . . . ,M)

β
(1)
0 , . . . , β

(M)
0 is defined via random grid search (inspired by Bhat et al., 2018)

early-stopping rule as soon |T ∗S(m) | ≥ Tα (cost or stress function)
T∗

S(m) permuted sign-flipping score statistics, Tα observed alpha level

adaptive restarting rule
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Random-search grid algorithm

β0
^

β1
~truncNormal(β0,σ)RIGHT

Ts
*

Ts
*

Ts
*

~truncNormal(β1,σ)RIGHT

Ts
*

Ts
*

Ts
*

βm

...

~truncNormal(βm,σ)RIGHT

Ts
*

Ts
*

Ts
*

βm+1

...
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Random-search grid algorithm

Basic instructions for pCIlb

double β = β̂ //initial estimate
int K //number of candidates
double[K] x
int i = 0
double α = 0.05
do{
i = i + 1
x = truncnormal(K,β,σ,lb=-Inf,ub=β)

for(k=1:K){
pv[k] = effective_score(...,x[k])}

[β,ρβ] = choose_best_beta(pv,x) // x with min p-value

} while(ρβ < α) //stopping rule
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Simulation

The algorithm is still under testing and preliminary results are available.

Short simulation study:

(y1, . . . , yn) ∼ NegBinomial (µi , φ), n = 100, φ = [1.2, 2.4]

µi = exp ([1 xi zi ]β), cor(x, z) = 0.8

Inference and testing are conducted under the wrong Poisson model

Outcome: sign-flipping pCIs, asymptotic Poisson and NegBinom CIs measured
on probability coverage and interval length (the shortest, the better)

Replicates: 500, Permutations: 1000
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Simulation

Results:

Poisson NegBinom Flip
φ β0 β̂0 cover length cover length cover length

1.20 0.195 0.198 0.564 0.315 0.932 0.472 0.956 0.497
2.40 1.59 1.57 0.688 0.590 0.936 0.943 0.928 1.071

(1− α) = 0.95
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Conclusions

the method is robust to misspecification and overdispersion

it works well with both LMs and GLMs

it can be trivially extended to handle with multivariate hypotheses

it requires parallel computing to speed up the search

the algorithm is still under developing and further studies are needed
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