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Introduction
Rating data and fuzzy scaling

Rating data are common in measuring human-based characteristics where atti-
tudes, motivations, satisfaction, or beliefs are quantified using rating scales.

Antonio Calcagǹı & Luigi Lombardi A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 – July 11, 2022 Introduction 2/10



Introduction
Rating data and fuzzy scaling

Rating data are common in measuring human-based characteristics where atti-
tudes, motivations, satisfaction, or beliefs are quantified using rating scales.

A typical example:

- I am satisfied with my life -

Strongly disagree − Disagree − 0 − Agree − Strongly agree
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Introduction
Rating data and fuzzy scaling

Rating data are common in measuring human-based characteristics where atti-
tudes, motivations, satisfaction, or beliefs are quantified using rating scales.

A typical example:

- I am satisfied with my current work -

Strongly disagree − Disagree − 0 − Agree − Strongly agree

Since rating scales involve human raters, responses are often affected by fuzzi-
ness because of the decision uncertainty which entails the response process.
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Rating data are common in measuring human-based characteristics where atti-
tudes, motivations, satisfaction, or beliefs are quantified using rating scales.

A typical example:

- I am satisfied with my current work -

Strongly disagree − Disagree − 0 − Agree − Strongly agree

Since rating scales involve human raters, responses are often affected by fuzzi-

ness because of the decision uncertainty which entails the response pro-

cess.

it originates from the cognitive demands of responding

(epistemic state of the rater)
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Introduction
Rating data and fuzzy scaling

Several methods might be adopted to quantify fuzziness (fuzzy scaling):

direct fuzzy rating [3]

implicit fuzzy rating [1]

deterministic crisp-to-fuzzy conversion systems [4]

statistically-oriented crisp-to-fuzzy conversion systems [5]

Besides their differences, all these approaches aim at quantifying the fuzziness
present in rating data.
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Introduction
Direct fuzzy rating

Raters answer questions by adopting a three stage-wise process:
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Introduction
Direct fuzzy rating

Goal: Define a tailor-made statistical model to mimic the stage-wise process
supposed to drive the unobserved rating response process [2].
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Data

Data consist of a random sample of I observations represented as triangular LR-
fuzzy numbers:

yI = {(c1, l1, r1), . . . , (ci , li , ri ), . . . , (cI , lI , rI )}

where:

ci ∈ {1, . . . ,M}: center (first step of the response process)

li ∈ {0, . . . ,M − 1}: left spread (second step of the response process)

ri ∈ {0, . . . ,M − 1}: right spread (third step of the response process)

The magnitude of li + ri quantifies the fuzziness of the response process.

M is the number of labels of the scale.
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Model

The realizations {Ci , Li ,Ri}Ii=1 are modeled according to a conditional model:

Ci ∼ Rasch-Tree(ηi ,α)
node1

node2
C = 3

node4node3

C = 1 C = 2 C = 4 C = 5
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Model

The realizations {Ci , Li ,Ri}Ii=1 are modeled according to a conditional model:

Ci ∼ Rasch-Tree(ηi ,α)

Rater’s ability: ηi ∼ N (µi , σ
2
η)

Easiness of transition among nodes: α ∈ RN

node1

node2
C = 3

node4node3

C = 1 C = 2 C = 4 C = 5
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Model

The realizations {Ci , Li ,Ri}Ii=1 are modeled according to a conditional model:

Ci ∼ Rasch-Tree(ηi ,α)

Zi ∼ Bern
(
ξi (α, ηi )

)
node1

node2
C = 3

node4node3

C = 1 C = 2 C = 4 C = 5
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Model

The realizations {Ci , Li ,Ri}Ii=1 are modeled according to a conditional model:

Ci ∼ Rasch-Tree(ηi ,α)

Zi ∼ Bern
(
ξi (α, ηi )

)
Zi = 0 (no decision uncertainty)

Li |Ci = 0

Ri |Ci = 0

Z1

Z2
0

Z4Z3

Strongly disagree Disagree Agree Strongly agree
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The realizations {Ci , Li ,Ri}Ii=1 are modeled according to a conditional model:

Ci ∼ Rasch-Tree(ηi ,α)

Zi ∼ Bern
(
ξi (α, ηi )

)
Zi = 0 (no decision uncertainty)

Li |Ci = 0

Ri |Ci = 0

Zi = 1

Li |Ci , ηi ∼ Binom
(
Ci − 1, πs

i (α, ηi )
)

Ri |Ci , ηi ∼ Binom
(
M − Ci , 1− πs

i (α, ηi )
)

Z1

Z2
0

Z4Z3

Strongly disagree Disagree Agree Strongly agree
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Model

The realizations {Ci , Li ,Ri}Ii=1 are modeled according to a conditional model:

Ci ∼ Rasch-Tree(ηi ,α)

Zi ∼ Bern
(
ξi (α, ηi )

)
Zi = 0

Li |Ci = 0

Ri |Ci = 0

Zi = 1

Li |Ci , ηi ∼ Binom
(
Ci − 1, πs

i (α, ηi )
)

Ri |Ci , ηi ∼ Binom
(
M − Ci , 1− πs

i (α, ηi )
)

ξi (α, ηi ) is computed as the
normalized Shannon entropy of
the probability to navigate the
Rasch-based tree:

higher probability to navigate the
tree structure → higher decision
uncertainty

Antonio Calcagǹı & Luigi Lombardi A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 – July 11, 2022 Statistical model 6/10



Model

The realizations {Ci , Li ,Ri}Ii=1 are modeled according to a conditional model:

Ci ∼ Rasch-Tree(ηi ,α)

Zi ∼ Bern
(
ξi (α, ηi )

)
Zi = 0

Li |Ci = 0

Ri |Ci = 0

Zi = 1

Li |Ci , ηi ∼ Binom
(
Ci − 1, πs

i (α, ηi )
)

Ri |Ci , ηi ∼ Binom
(
M − Ci , 1− πs

i (α, ηi )
)

πs
i (α, ηi ) is computed as the

probability to choose lower
responses P(Ci < c).
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Model

The realizations {Ci , Li ,Ri}Ii=1 are modeled according to a conditional model:

Ci ∼ Rasch-Tree(ηi ,α)

ηi ∼ N (µi = xiβ, σ
2
η)

Zi ∼ Bern
(
ξi (α, ηi )

)
Zi = 0

Li |Ci = 0

Ri |Ci = 0

Zi = 1

Li |Ci , ηi ∼ Binom
(
Ci − 1, πs

i (α, ηi )
)

Ri |Ci , ηi ∼ Binom
(
M − Ci , 1− πs

i (α, ηi )
)

External covariates xi (e.g., sex,
group, age) can be added by
modulating the rater’s (mean)
ability.
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Model
Parameter estimation

The parameters of the model

θ = {α,β, σ2
η} ⊂ RN × RK × R+

have been estimated via the maximization of the marginal likelihood:

lnL(θ) =

∫
R
P(Yi = (ci , li , ri )|ηi ;α)fηi (η; xiβ, σ

2
η) dη

with the integral being approximated via the Gauss-Hermite quadrature.
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Case study
Predictors of reckless driving behavior

Aim: Investigate predictors of reckless driving behavior (RDB).

Sample: n = 69 participants from north-est of Italy (45% female, mean age
18.23 years, young drivers).

Predictors: driving anger provoked by someone else’s behaviors (DAS), sex.

Ratings collected using a fuzzy rating scale with M = 4 anchors.
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Case study
Predictors of reckless driving behavior

Data analysis: Four models M1-M4 have been defined to predict RDB. The
models differ in terms of covariates for the term µ of raters’ abilities.

The final model has been according the minimum-BIC criterion.
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Case study
Predictors of reckless driving behavior

Results:

Model Covariates lnL(θ) BIC

M1 - -161.15 330.767
M2 sex -157.855 328.412
M3 sex, DAS -155.268 327.472
M4 sex, DAS, sex:DAS -155.253 331.676
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Case study
Predictors of reckless driving behavior
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Driving anger (DAS) increased the
levels of decision uncertainty.

Male participants showed a larger
fuzziness if compared to female
participants.
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Case study
Predictors of reckless driving behavior
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The group sex=F showed a stronger
tendency to choose lower response
categories (β̂sex=F = −1.248) if
compared to group sex=M

(β̂sex=M = 0.408).
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Case study
Predictors of reckless driving behavior
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DAS was positively associated to RDB

(β̂das = 1.284).

DAS increased the tendency to
activate higher responses on the
scale.
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Conclusions

From general to particular: The model offers a thorough formal account
of the mechanism underlying the fuzzy rating process

Results are still preliminary: Further investigations needed to adequately
test the proposed conditional model

Further studies needed to overcome current limitations (e.g., multivariate
context, shape of LR-fuzzy data)
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