A Probabilistic tree model to analize fuzzy rating data

Antonio Calcagnì University of Padova Luigi Lombardi University of Trento

19th International Conference on

Information Processing and Management of Uncertainty in Knowledge-Based Systems

July, 11-15 2022

Antonio Calcagnì & Luigi Lombardi

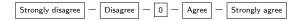
A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 - July 11, 2022

IPMU 2022 - July 11, 2022

A typical example:

- I am satisfied with my life -


Antonio Calcagnì & Luigi Lombardi

Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 - July 11, 2022

A typical example:

- I am satisfied with my current work -

Since rating scales involve human raters, responses are often affected by **fuzziness** because of the **decision uncertainty** which entails the **response process**.

Antonio Calcagnì & Luigi Lombardi

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870

A typical example:

- I am satisfied with my current work -

Since rating scales involve human raters, responses are often affected by **fuzzi**ness because of the **decision uncertainty** which entails the response process.

(epistemic state of the rater)

Antonio Calcagnì & Luigi Lombardi

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 - July 11, 2022

Several methods might be adopted to quantify fuzziness (fuzzy scaling):

- direct fuzzy rating [3]
- implicit fuzzy rating [1]
- deterministic crisp-to-fuzzy conversion systems [4]
- statistically-oriented crisp-to-fuzzy conversion systems [5]

Besides their differences, all these approaches aim at quantifying the fuzziness present in rating data.

IPMU 2022 - July 11, 2022

Raters answer questions by adopting a three stage-wise process:

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 – July 11, 2022

Raters answer questions by adopting a three stage-wise process:

Antonio Calcagnì & Luigi Lombardi

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 - July 11, 2022

Raters answer questions by adopting a three stage-wise process:

Antonio Calcagnì & Luigi Lombardi

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 - July 11, 2022

<u>Goal</u>: Define a *tailor-made* statistical model to *mimic* the stage-wise process supposed to drive the unobserved rating response process [2].

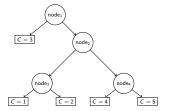
IPMU 2022 - July 11, 2022

Data consist of a random sample of *I* observations represented as triangular LR-fuzzy numbers:

$$\mathbf{y}_{l} = \{(c_{1}, l_{1}, r_{1}), \dots, (c_{i}, l_{i}, r_{i}), \dots, (c_{l}, l_{l}, r_{l})\}$$

where:

• $c_i \in \{1, \ldots, M\}$: center	$(\underline{\text{first step}} \text{ of the response process})$	
• $I_i \in \{0, \dots, M-1\}$: left spread	$(\underline{second \ step}$ of the response process)	
• $r_i \in \{0, \dots, M-1\}$: right spread	$(\underline{\text{third step}} \text{ of the response process})$	


The magnitude of $l_i + r_i$ quantifies the fuzziness of the response process. *M* is the number of labels of the scale.

Antonio Calcagnì & Luigi Lombardi

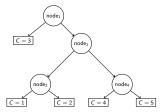
A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870

The realizations $\{C_i, L_i, R_i\}_{i=1}^{l}$ are modeled according to a **conditional model**:

 $C_i \sim \mathsf{Rasch-Tree}(\eta_i, \boldsymbol{\alpha})$

Antonio Calcagnì & Luigi Lombardi

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)


IPMU 2022 – July 11, 2022

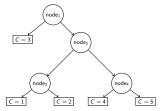
The realizations $\{C_i, L_i, R_i\}_{i=1}^{l}$ are modeled according to a **conditional model**:

 $C_i \sim \mathsf{Rasch-Tree}(\eta_i, \boldsymbol{lpha})$

Rater's ability: $\eta_i \sim \mathcal{N}(\mu_i, \sigma_\eta^2)$

Easiness of transition among nodes: $\boldsymbol{\alpha} \in \mathbb{R}^{N}$

Antonio Calcagnì & Luigi Lombardi

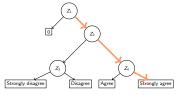

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 - July 11, 2022

The realizations $\{C_i, L_i, R_i\}_{i=1}^{l}$ are modeled according to a **conditional model**:

 $C_i \sim \mathsf{Rasch-Tree}(\eta_i, \boldsymbol{\alpha})$

 $Z_i \sim \mathcal{B}ern(\xi_i(\boldsymbol{\alpha},\eta_i))$


Antonio Calcagnì & Luigi Lombardi

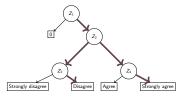
A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 - July 11, 2022

The realizations $\{C_i, L_i, R_i\}_{i=1}^{I}$ are modeled according to a **conditional model**:

$$C_i \sim \text{Rasch-Tree}(\eta_i, \alpha)$$

 $Z_i \sim \mathcal{B}ern(\xi_i(\alpha, \eta_i))$
 $Z_i = 0$ (no decision uncertainty)
 $L_i | C_i = 0$
 $R_i | C_i = 0$


Antonio Calcagnì & Luigi Lombardi

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 - July 11, 2022

The realizations $\{C_i, L_i, R_i\}_{i=1}^l$ are modeled according to a **conditional model**:

 $C_{i} \sim \text{Rasch-Tree}(\eta_{i}, \alpha)$ $Z_{i} \sim \mathcal{B}ern(\xi_{i}(\alpha, \eta_{i}))$ $Z_{i} = 0 \quad (\text{no decision uncertainty})$ $L_{i}|C_{i} = 0$ $R_{i}|C_{i} = 0$ $Z_{i} = 1$ $L_{i}|C_{i}, \eta_{i} \sim \mathcal{B}inom(C_{i} - 1, \pi_{i}^{s}(\alpha, \eta_{i}))$ $R_{i}|C_{i}, \eta_{i} \sim \mathcal{B}inom(M - C_{i}, 1 - \pi_{i}^{s}(\alpha, \eta_{i}))$

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

Statistical model 6/10

IPMU 2022 - July 11, 2022

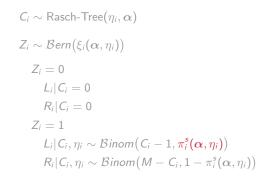
The realizations $\{C_i, L_i, R_i\}_{i=1}^{l}$ are modeled according to a **conditional model**:

 $C_i \sim \mathsf{Rasch-Tree}(\eta_i, \alpha)$

 $Z_i \sim Bern(\xi_i(\boldsymbol{\alpha}, \eta_i))$

$$\begin{split} Z_i &= 0\\ L_i | C_i &= 0\\ R_i | C_i &= 0\\ Z_i &= 1\\ L_i | C_i, \eta_i \sim \mathcal{B}inom\big(C_i - 1, \pi_i^s(\alpha, \eta_i)\big)\\ R_i | C_i, \eta_i \sim \mathcal{B}inom\big(M - C_i, 1 - \pi_i^s(\alpha, \eta_i)\big) \end{split}$$

 $\xi_i(\alpha, \eta_i)$ is computed as the **normalized Shannon entropy** of the probability to navigate the Rasch-based tree:


higher probability to navigate the tree structure \rightarrow higher decision uncertainty

Antonio Calcagnì & Luigi Lombardi

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 - July 11, 2022

The realizations $\{C_i, L_i, R_i\}_{i=1}^l$ are modeled according to a **conditional model**:

 $\pi_i^{s}(\alpha, \eta_i)$ is computed as the probability to choose lower responses $\mathbb{P}(C_i < c)$.

Antonio Calcagnì & Luigi Lombardi

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 - July 11, 2022

The realizations $\{C_i, L_i, R_i\}_{i=1}^l$ are modeled according to a **conditional model**:

$$\begin{split} C_i &\sim \mathsf{Rasch-Tree}(\eta_i, \alpha) \\ \eta_i &\sim \mathcal{N}(\mu_i = \mathbf{x}_i \boldsymbol{\beta}, \sigma_\eta^2) \\ Z_i &\sim \mathcal{B}ern(\xi_i(\alpha, \eta_i)) \\ Z_i &= 0 \\ L_i | C_i &= 0 \\ R_i | C_i &= 0 \\ Z_i &= 1 \\ L_i | C_i, \eta_i &\sim \mathcal{B}inom(C_i - 1, \pi_i^s(\alpha, \eta_i)) \\ R_i | C_i, \eta_i &\sim \mathcal{B}inom(M - C_i, 1 - \pi_i^s(\alpha, \eta_i)) \end{split}$$

External covariates x_i (e.g., sex, group, age) can be added by modulating the rater's (mean) ability.

Antonio Calcagnì & Luigi Lombardi

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 - July 11, 2022

The parameters of the model

$$\boldsymbol{\theta} = \{\boldsymbol{\alpha}, \boldsymbol{\beta}, \sigma_{\eta}^2\} \subset \mathbb{R}^{N} \times \mathbb{R}^{K} \times \mathbb{R}_+$$

have been estimated via the maximization of the marginal likelihood:

$$\ln \mathcal{L}(\boldsymbol{\theta}) = \int_{\mathbb{R}} \mathbb{P}(Y_i = (c_i, l_i, r_i) | \eta_i; \boldsymbol{\alpha}) f_{\eta_i}(\eta; \mathbf{x}_i \boldsymbol{\beta}, \sigma_{\eta}^2) \ d\eta$$

with the integral being approximated via the Gauss-Hermite quadrature.

Antonio Calcagnì & Luigi Lombardi

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

Aim: Investigate predictors of reckless driving behavior (RDB).

Sample: n = 69 participants from north-est of Italy (45% female, mean age 18.23 years, young drivers).

Predictors: driving anger provoked by someone else's behaviors (DAS), sex. Ratings collected using a fuzzy rating scale with M = 4 anchors. **Data analysis:** Four models M1-M4 have been defined to predict RDB. The models differ in terms of covariates for the term μ of raters' abilities.

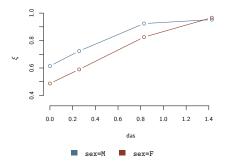
The final model has been according the minimum-BIC criterion.

Antonio Calcagnì & Luigi Lombardi

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870

IPMU 2022 - July 11, 2022

Results:


Model	Covariates	$\ln \mathcal{L}(oldsymbol{ heta})$	BIC
M1	-	-161.15	330.767
M2	sex	-157.855	328.412
M3	sex, DAS	-155.268	327.472
M4	<pre>sex, DAS, sex:DAS</pre>	-155.253	331.676

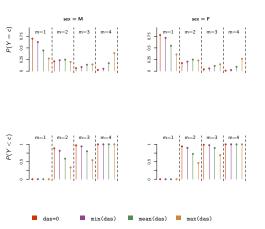
Antonio Calcagnì & Luigi Lombardi

Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 - July 11, 2022

Case study Predictors of reckless driving behavior

Driving anger (DAS) increased the levels of decision uncertainty.

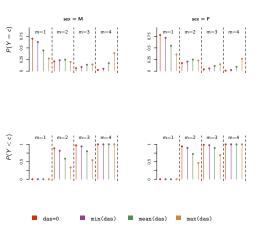

Male participants showed a larger fuzziness if compared to female participants.

Antonio Calcagnì & Luigi Lombardi

Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 - July 11, 2022

Case study Predictors of reckless driving behavior


The group sex=F showed a stronger tendency to choose lower response categories ($\hat{\beta}_{sex=F} = -1.248$) if compared to group sex=M ($\hat{\beta}_{sex=M} = 0.408$).

Antonio Calcagnì & Luigi Lombardi

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 - July 11, 2022

Case study Predictors of reckless driving behavior

DAS was positively associated to RDB ($\hat{\beta}_{\rm das} = 1.284$).

DAS increased the tendency to activate higher responses on the scale.

Antonio Calcagnì & Luigi Lombardi

IPMU 2022 - July 11, 2022

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

- From general to particular: The model offers a thorough formal account of the mechanism underlying the fuzzy rating process
- Results are still preliminary: Further investigations needed to adequately test the proposed conditional model
- Further studies needed to overcome current limitations (e.g., multivariate context, shape of LR-fuzzy data)

[1] CALCAGNÌ, A., AND LOMBARDI, L.

Dynamic fuzzy rating tracker (dyfrat): a novel methodology for modeling real-time dynamic cognitive processes in rating scales.

Applied soft computing 24 (2014), 948-961.

- [2] CALCAGNÌ, A., CAO, N., RUBALTELLI, E., AND LOMBARDI, L. A psychometric modeling approach to fuzzy rating data. *Fuzzy Sets and Systems* (2022), 1–24 (In Press).
- [3] DE SÁA, S. D. L. R., GIL, M. Á., GONZÁLEZ-RODRÍGUEZ, G., LÓPEZ, M. T., AND LUBIANO, M. A. Fuzzy rating scale-based questionnaires and their statistical analysis. *IEEE Transactions on Fuzzy Systems* 23, 1 (2014), 111–126.
- [4] VONGLAO, P.

Application of fuzzy logic to improve the likert scale to measure latent variables. *Kasetsart Journal of Social Sciences 38*, 3 (2017), 337–344.

[5] YU, S.-C., AND WU, B.

Fuzzy item response model: a new approach to generate membership function to score psychological measurement.

Quality and Quantity 43, 3 (2009), 381.

antonio.calcagni@unipd.it

Antonio Calcagnì & Luigi Lombardi

A Probabilistic tree model for fuzzy rating data (arXiv:2201.02870)

IPMU 2022 - July 11, 2022

References 10/10