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Introduction

Fuzzy data are ubiquitous in many research contexts, including social and be-
havioral sciences.

Rating data are a typical example of fuzzy data, as the process of measuring
human attitudes, motivations, or beliefs involve a certain degree of uncertainty
and fuzziness.

Fuzzy data are also common in classification-based problem, such as when
precise data are classified into imprecise categories (e.g., images or scenes clas-
sification, content analysis, human-based assessments).
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Introduction

In these cases, statistical models have to cope with fuzzy data and appropriate
methods need to be used in order to make inference appropriately.

Several methods have been proposed over the years, most of them based on
generalization of likelihood theory to fuzzy samples [1, 2].

However, statistical estimators often suffer from excessive variance (i.e., larger
standard errors) especially when epistemic fuzzy data are considered [3].
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Introduction

Goal:

Define a probabilistic schema to mimic the sampling process underlying
epistemic fuzzy data

Use this mechanism to make inference on the parameters of statistical
models

Plug this mechanism into statistical estimators to reduce variance of
estimated parameters
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A conditional sampling schema
The Beta-type fuzzy numbers

The proposed solution uses Beta-type fuzzy numbers as a general template for
representing continuous and unimodal fuzzy numbers.
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A conditional sampling schema
The Beta-type fuzzy numbers
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Flexible and parsimonious as they require two parameters only (m:
mode; s: precision)

Deal with variables supported on bounded or semi-infinite intervals (as
those commonly used in social and behavioral research)

Generalize triangular fuzzy numbers as well
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A conditional sampling schema
Statement of the problem

Let Y1, . . . ,Yn be n independent continuous r.vs. and ỹ = (ỹ1, . . . , ỹn) a sample
of fuzzy observations. The vector ỹ is a blurred version of y because of post-
sampling or epistemic uncertainty-based processes.

The interest lies in studying fY1,...,Yn (y;θy ) with the purpose of making inference
on θy given the fuzzy sample ỹ .

Each fuzzy observation ỹi consists of mode and precision {mi , si} of a Beta-type
fuzzy number.
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A conditional sampling schema
Proposed solution

The idea is to use a conditional schema linking the parameters of fuzzy numbers
(i.e., mode m and precision s) to fY1,...,Yn (y;θy ):
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A conditional sampling schema
Proposed solution

The idea is to use a conditional schema linking the parameters of fuzzy numbers
(i.e., mode m and precision s) to fY1,...,Yn (y;θy ):

yi ∼ fY (y ;θy )

si ∼ fS(s;θs)

mi |yi , si ∼ fM|S,Y (m;ω(y , s))
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A conditional sampling schema
Proposed solution

yi ∼ fY (y ;θy )

si ∼ fS(s;θs)

mi |yi , si ∼ fM|S,Y (m;ω(y , s))

Rv governing the stochastic (non-fuzzy) sampling process. The parameters can
be expressed as a function of external covariates θy = g−1(Xβ) as for GLMs.

It depends on the specific problem one is dealing with (e.g., Beta distribution,
Logistic distribution, Weibull distribution).
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A conditional sampling schema
Proposed solution

yi ∼ fY (y ;θy )

si ∼ Ga(s;αs , βs)

mi |yi , si ∼ fM|S,Y (m;ω(y , s))

Gamma distribution with αs > 0 and βs > 0 modeling the precision (or spread)
of the fuzzy number. In the simplest case, si |= yi although it can be generalized
to cope with cases where si depends on yi or external covariates.
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A conditional sampling schema
Proposed solution

yi ∼ fY (y ;θy )

si ∼ Ga(s;αs , βs)

mi |yi , si ∼ fM|S,Y (m;ω(y , s))

Rv for the mode of the fuzzy number as a function of the true unobserved
outcome yi and the spread si .
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A conditional sampling schema
Proposed solution

yi ∼ fY (y ;θy )

si ∼ Ga(s;αs , βs)

mi |yi , si ∼ Be4P(m; siyi , si − siy1, lb, ub)

Rv governing the mode of the fuzzy number as a function of the true unobserved
outcome yi and the spread si .

Case 1: y ∈ (lb, ub) ⊂ R the four-parameter Beta distribution is used.
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A conditional sampling schema
Proposed solution

yi ∼ fY (y ;θy )

si ∼ Ga(s;αs , βs)

mi |yi , si ∼ BeP(m; yi + yi si , si + 2)

Rv governing the mode of the fuzzy number as a function of the true unobserved
outcome yi and the fuzziness si .

Case 2: y ∈ (0,+∞) the Beta prime distribution is instead used.
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A conditional sampling schema
Proposed solution

yi ∼ fY (y ;θy ) (1)

si ∼ Ga(s;αs , βs) (2)

mi |si , yi ∼

Be4P(m; siyi , si − siy1, lb, ub), if yi ∈ (lb, ub)

BeP(m; yi + yi si , si + 2), if yi ∈ (0,+∞)
(3)

In both cases, the fuzziness propagation through Eq. (3) acts by letting
(m1, . . . ,mn) spread out near E [Y ].
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A conditional sampling schema
Proposed solution
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Examples of a Beta-type 1 fuzzy number ξỹ masking the (true) uncorrupted realizations y
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Inference on θy
Approximated Gibbs sampling

Inference about θy involves a kind of deblurring procedure which uses ỹ instead
of the unobserved realizations y.
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Inference on θy
Approximated Gibbs sampling

The idea is to plug the hypothesized sampling schema into the estimation pro-
cedure, which naturally leads to a Gibbs sampler-based solution:

For t > 1 do:

y(t) ∼ π(y|m, s,θ(t−1)
y )

θ(t)
y ∼ π(θy |m, s, y (t))

For large T inference on θy can be performed by inspection of the posterior

sequence
(
θ

(1)
y , . . . ,θ

(T )
y

)
.
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Inference on θy
Approximated Gibbs sampling

Conditional posterior densities π(y| . . .) and π(θy | . . .) do not have known form
under the proposed sampling schema. Then, hybrid solutions, such as posterior
approximation or Metropolis within Gibbs could be used to solve the problem.
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Inference on θy
Approximated Gibbs sampling

Conditional posterior densities π(y| . . .) and π(θy | . . .) do not have known form
under the proposed sampling schema. Then, hybrid solutions, such as posterior
approximation or Metropolis within Gibbs could be used to solve the problem.

Posterior sampling schema:

π(θy |y, {m, s}) via MCMC [5]

↗
π(y,θy |{m, s})

↘
π(y|θy , {m, s}) via quadratic posterior approximation [4]
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Inference on θy
Approximating π(y | . . .)

Case 1 : y ∈ (lb, ub)

lnπ(yi |θy , . . .) ∝ − ln Γ(y∗i si )− ln Γ(si − siy
∗
i ) + siy

∗
i ln

(
mi − lb

ub −mi

)
+ ln fY (y ;θy )

∼
= lnBe4P(y ;λσ, σ − σλ, lb, ub)

y∗i = (yi − lb)/(ub − lb)
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Inference on θy
Approximating π(y | . . .)

Case 1 : y ∈ (lb, ub)

lnπ(yi |θy , . . .) ∝ −

h(y ;m,s,lb,ub)︷ ︸︸ ︷
ln Γ(y∗i si )− ln Γ(si − siy

∗
i ) + siy

∗
i ln

(
mi − lb

ub −mi

)
+ ln fY (y ;θy )

∼
= lnBe4P(y ;λσ, σ − σλ, lb, ub)

{λ, σ} ∈ (lb, ub)× R+ :

∂k

∂yk
lnBeta4P(y ;λσ, σ − σλ, lb, ub) =

∂k

∂yk

(
h(y ;m, s, lb, ub) + ln fY (y ;θy )

)
k = 1, 2
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Inference on θy
Approximating π(y | . . .)

Case 2 : y ∈ (lb,+∞)

lnπ(yi |θy , . . .) ∝ ln B(yi + si , si + 2)−1 + ln

(
mi

mi + 1

)
(yi + siyi ) + lnmi + 2 ln(1 + mi )+

+ ln fY (y ;θy )

∼
= lnBeP(y ;λ+ λσ, σ + 2)
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Inference on θy
Approximating π(y | . . .)

Case 2 : y ∈ (lb,+∞)

lnπ(yi |θy , . . .) ∝

g(y ;m,s)︷ ︸︸ ︷
ln B(yi + si , si + 2)−1 + ln

(
mi

mi + 1

)
(yi + siyi ) + lnmi + 2 ln(1 + mi ) +

+ ln fY (y ;θy )

∼
= lnBeP(y ;λ+ λσ, σ + 2)

{λ, σ} ∈ (0,+∞)× R+ :

∂k

∂yk
lnBeP(y ;λ+ λσ, σ + 2) =

∂k

∂yk

(
g(y ;m, s) + ln fY (y ;θy )

)
k = 1, 2
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Simulation study
Design

Aim: Assessing the quadratic posterior approximation of π(y |θy , . . .) via Be4P

and BeP distributions for both bounded and left-bounded cases.

Methods: The derivative-based density approximation (DA) is contrasted against
the Adaptive Rejection Sampling (ARS) algorithm.

Measures:

Total variation distance: dTV = 1
2

∫ ∣∣π̃(y | . . .)− π(y | . . .)
∣∣dy

Computation time
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Simulation study
Design

Case 1 : y ∈ (lb, ub)

fY (y ;θy )
def
= LGNorm(y ;µ, φ) Logit Normal distribution

lb = 0, ub = 1

µ ∈ {−1.85, 0, 1.85}
φ ∈ {1.0, 3.5}

s ∼ Ga(s; 45.0, 45.0/µs)

µs ∈ {5.0, 25.0, 50.0}

n = 2000 replicates for each combination
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Simulation study
Design

Case 2 : y ∈ (0,+∞)

fY (y ;θy )
def
= Ga(y ;α, β) Gamma distribution

α ∈ {1.0, 1.5, 3.0}
β ∈ {4.9.0, 9.0}

s ∼ Ga(s; 45.0, 45.0/µs)

µs ∈ {5.0, 25.0, 50.0}

n = 2000 replicates for each combination
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A. Calcagǹı & P. Grzegorzewski Approximated Gibbs sampling for continuous fuzzy numbers

EUSFLAT 2023 – Sept 07, 2023 Simulation study 10/14



Simulation study
Results - Case 1
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Simulation study
Results - Case 2
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Simulation study
Results - Case 2
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Conclusions

A general framework for data analysis by taking the advantages of a
general sampling schema for the fuzziness propagation over the
outcomes of fY (y ;θy )

Results are still preliminary: Further simulations coupling DA with
MCMC are currently underway

Generalizations to non-convex and trapezoidal fuzzy numbers need also
to be considered
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