Approximated Gibbs sampling for continuous fuzzy numbers

Antonio Calcagnì University of Padova Przemyslaw Grzegorzewski

Warsaw University of Technology

A. Calcagnì & P. Grzegorzewski

pproximated Gibbs sampling for continuous fuzzy numbers

EUSFLAT 2023 - Sept 07, 2023

Fuzzy data are ubiquitous in many research contexts, including social and behavioral sciences.

Rating data are a typical example of fuzzy data, as the process of measuring human attitudes, motivations, or beliefs involve a certain **degree of uncertainty** and fuzziness.

Fuzzy data are also common in **classification-based problem**, such as when precise data are classified into imprecise categories (e.g., images or scenes classification, content analysis, human-based assessments).

In these cases, **statistical models** have to cope with fuzzy data and appropriate methods need to be used in order to make **inference** appropriately.

Several methods have been proposed over the years, most of them based on **generalization of likelihood theory** to fuzzy samples [1, 2].

However, statistical **estimators** often suffer from **excessive variance** (i.e., larger standard errors) especially when **epistemic fuzzy data** are considered [3].

Goal:

- Define a probabilistic schema to mimic the sampling process underlying epistemic fuzzy data
- Use this mechanism to make inference on the parameters of statistical models
- Plug this mechanism into statistical estimators to reduce variance of estimated parameters

The proposed solution uses Beta-type fuzzy numbers as a general template for representing **continuous** and **unimodal** fuzzy numbers.

Approximated Gibbs sampling for continuous fuzzy numbers

EUSFLAT 2023 – Sept 07, 2023

A conditional sampling schema 4/14

A conditional sampling schema

The Beta-type fuzzy numbers

- Flexible and parsimonious as they require two parameters only (m: mode; s: precision)
- Deal with variables supported on bounded or semi-infinite intervals (as those commonly used in social and behavioral research)
- Generalize triangular fuzzy numbers as well

Let Y_1, \ldots, Y_n be *n* independent continuous r.vs. and $\tilde{\mathbf{y}} = (\tilde{y}_1, \ldots, \tilde{y}_n)$ a sample of fuzzy observations. The vector $\tilde{\mathbf{y}}$ is a **blurred** version of \mathbf{y} because of *post-sampling* or epistemic uncertainty-based processes.

The interest lies in studying $f_{Y_1,...,Y_n}(\mathbf{y}; \boldsymbol{\theta}_{\mathbf{y}})$ with the purpose of making inference on $\boldsymbol{\theta}_{\mathbf{y}}$ given the fuzzy sample $\tilde{\mathbf{y}}$.

Each fuzzy observation \tilde{y}_i consists of mode and precision $\{m_i, s_i\}$ of a Beta-type fuzzy number.

The idea is to use a **conditional schema** linking the parameters of fuzzy numbers (i.e., mode *m* and precision *s*) to $f_{Y_1,...,Y_n}(\mathbf{y}; \boldsymbol{\theta}_{\mathbf{y}})$:

A. Calcagnì & P. Grzegorzewsk

Approximated Gibbs sampling for continuous fuzzy numbers

EUSFLAT 2023 - Sept 07, 2023

A conditional sampling schema 6/14

The idea is to use a **conditional schema** linking the parameters of fuzzy numbers (i.e., mode *m* and precision *s*) to $f_{Y_1,...,Y_n}(\mathbf{y}; \boldsymbol{\theta}_{\mathbf{y}})$:

$$egin{aligned} y_i &\sim f_Y(y;m{ heta}_y) \ && s_i &\sim f_S(s;m{ heta}_s) \ && m_i | y_i, s_i &\sim f_{\mathcal{M}|S,Y}(m;\omega(y,s)) \end{aligned}$$

A. Calcagnì & P. Grzegorzewski

Approximated Gibbs sampling for continuous fuzzy numbers

EUSFLAT 2023 - Sept 07, 2023

A conditional sampling schema 6/14

$$\begin{aligned} \mathbf{y}_{i} \sim f_{Y}(y; \boldsymbol{\theta}_{y}) \\ \\ s_{i} \sim f_{S}(s; \boldsymbol{\theta}_{s}) \\ \\ m_{i}|y_{i}, s_{i} \sim f_{M|S,Y}(m; \boldsymbol{\omega}(y, s)) \end{aligned}$$

Rv governing the stochastic (**non-fuzzy**) sampling process. The parameters can be expressed as a function of external covariates $\theta_y = g^{-1}(\mathbf{X}\beta)$ as for GLMs.

It depends on the specific problem one is dealing with (e.g., Beta distribution, Logistic distribution, Weibull distribution).

A. Calcagnì & P. Grzegorzewski

$$\begin{aligned} y_i \sim f_Y(y; \boldsymbol{\theta}_y) \\ \hline \boldsymbol{s}_i \sim \mathcal{G}\boldsymbol{a}(\boldsymbol{s}; \boldsymbol{\alpha}_s, \boldsymbol{\beta}_s) \\ m_i | y_i, s_i \sim f_{M|S,Y}(m; \boldsymbol{\omega}(y, s)) \end{aligned}$$

Gamma distribution with $\alpha_s > 0$ and $\beta_s > 0$ modeling the precision (or spread) of the fuzzy number. In the simplest case, $s_i \perp \perp y_i$ although it can be generalized to cope with cases where s_i depends on y_i or external covariates.

A. Calcagnì & P. Grzegorzewsk

Approximated Gibbs sampling for continuous fuzzy numbers

EUSFLAT 2023 - Sept 07, 2023

A conditional sampling schema 6/14

$$\begin{aligned} y_i &\sim f_Y(y; \theta_y) \\ s_i &\sim \mathcal{G}a(s; \alpha_s, \beta_s) \\ \hline m_i | y_i, s_i &\sim f_{\mathsf{M}|\mathsf{S}, Y}(m; \omega(y, s)) \end{aligned}$$

Rv for the mode of the fuzzy number as a function of the true unobserved outcome y_i and the spread s_i .

A. Calcagnì & P. Grzegorzewsk

EUSFLAT 2023 - Sept 07, 2023

Approximated Gibbs sampling for continuous fuzzy numbers

$$\begin{aligned} y_i &\sim f_Y(y; \theta_y) \\ s_i &\sim \mathcal{G}a(s; \alpha_s, \beta_s) \end{aligned}$$
$$\boxed{m_i | y_i, s_i \sim \mathcal{B}e_{4P}(m; s_i y_i, s_i - s_i y_1, lb, ub)} \end{aligned}$$

Rv governing the mode of the fuzzy number as a function of the true unobserved outcome y_i and the spread s_i .

Case 1: $y \in (lb, ub) \subset \mathbb{R}$ the four-parameter Beta distribution is used.

A. Calcagnì & P. Grzegorzewski

Approximated Gibbs sampling for continuous fuzzy numbers

EUSFLAT 2023 - Sept 07, 2023

A conditional sampling schema 6/14

$$\begin{aligned} y_i &\sim f_Y(y; \theta_y) \\ s_i &\sim \mathcal{G}a(s; \alpha_s, \beta_s) \end{aligned}$$
$$\boxed{m_i | y_i, s_i \sim \mathcal{B}e_P(m; y_i + y_i s_i, s_i + 2)} \end{aligned}$$

Rv governing the mode of the fuzzy number as a function of the true unobserved outcome y_i and the fuzziness s_i .

Case 2: $y \in (0, +\infty)$ the **Beta prime distribution** is instead used.

A. Calcagnì & P. Grzegorzewsk

Approximated Gibbs sampling for continuous fuzzy numbers

EUSFLAT 2023 - Sept 07, 2023

A conditional sampling schema 6/14

$$y_i \sim f_Y(y; \theta_y)$$
 (1)

$$s_i \sim \mathcal{G}a(s; \alpha_s, \beta_s)$$
 (2)

$$m_i|s_i, y_i \sim \begin{cases} \mathcal{B}e_{4P}(m; s_i y_i, s_i - s_i y_1, lb, ub), & \text{if } y_i \in (lb, ub) \\ \mathcal{B}e_P(m; y_i + y_i s_i, s_i + 2), & \text{if } y_i \in (0, +\infty) \end{cases}$$
(3)

In both cases, the **fuzziness propagation** through Eq. (3) acts by letting (m_1, \ldots, m_n) spread out near $\mathbb{E}[Y]$.

A. Calcagnì & P. Grzegorzewsk

Approximated Gibbs sampling for continuous fuzzy numbers

Examples of a Beta-type 1 fuzzy number $\xi_{\tilde{y}}$ masking the (true) uncorrupted realizations y

A. Calcagnì & P. Grzegorzewski

Approximated Gibbs sampling for continuous fuzzy numbers

EUSFLAT 2023 - Sept 07, 2023

A conditional sampling schema 7/14

Inference about θ_y involves a kind of **deblurring** procedure which uses \tilde{y} instead of the unobserved realizations **y**.

EUSFLAT 2023 - Sept 07, 2023

Approximated Gibbs sampling for continuous fuzzy numbers

The idea is to plug the hypothesized sampling schema into the estimation procedure, which naturally leads to a **Gibbs sampler**-based solution:

 $rac{ extsf{For }t > 1 extsf{ do:}}{oldsymbol{y}^{(t)}} \sim \pi(oldsymbol{y} | oldsymbol{m}, oldsymbol{s}, oldsymbol{ heta}_y^{(t-1)})
onumber \ oldsymbol{ heta}_{oldsymbol{y}}^{(t)} \sim \pi(oldsymbol{ heta}_y | oldsymbol{m}, oldsymbol{s}, oldsymbol{y}^{(t)})$

For large T inference on θ_y can be performed by inspection of the posterior sequence $\left(\theta_y^{(1)}, \ldots, \theta_y^{(T)}\right)$.

A. Calcagnì & P. Grzegorzewski

Approximated Gibbs sampling for continuous fuzzy numbers

EUSFLAT 2023 - Sept 07, 2023

Conditional posterior densities $\pi(\mathbf{y}|...)$ and $\pi(\theta_{\mathbf{y}}|...)$ do not have known form under the proposed sampling schema. Then, hybrid solutions, such as **posterior approximation** or **Metropolis within Gibbs** could be used to solve the problem.

Inference on θ_v 8/14

EUSFLAT 2023 - Sept 07, 2023

Conditional posterior densities $\pi(\mathbf{y}|...)$ and $\pi(\theta_{\mathbf{y}}|...)$ do not have known form under the proposed sampling schema. Then, hybrid solutions, such as **posterior approximation** or **Metropolis within Gibbs** could be used to solve the problem.

Posterior sampling schema:

$$\pi(\boldsymbol{\theta}_{\mathbf{y}}|\mathbf{y}, \{\mathbf{m}, \mathbf{s}\}) \quad \text{via MCMC [5]}$$

$$\pi(\mathbf{y}, \boldsymbol{\theta}_{\mathbf{y}}|\{\mathbf{m}, \mathbf{s}\}) \quad \sum_{\boldsymbol{\pi}(\mathbf{y}|\boldsymbol{\theta}_{\mathbf{y}}, \{\mathbf{m}, \mathbf{s}\}) \quad \text{via quadratic posterior approximation [4]}}$$

Conditional posterior densities $\pi(\mathbf{y}|...)$ and $\pi(\theta_{\mathbf{y}}|...)$ do not have known form under the proposed sampling schema. Then, hybrid solutions, such as **posterior approximation** or **Metropolis within Gibbs** could be used to solve the problem.

Posterior sampling schema:

$$\pi(\boldsymbol{\theta}_{\mathbf{y}}|\mathbf{y}, \{\mathbf{m}, \mathbf{s}\}) \quad \forall ia \text{ MCMC [5]}$$

$$\pi(\mathbf{y}, \boldsymbol{\theta}_{\mathbf{y}}|\{\mathbf{m}, \mathbf{s}\}) \quad \mathbf{x} \quad \mathbf{x}(\mathbf{y}|\boldsymbol{\theta}_{\mathbf{y}}, \{\mathbf{m}, \mathbf{s}\}) \quad \forall ia \text{ quadratic posterior approximation [4]}$$

A. Calcagnì & P. Grzegorzewski

Approximated Gibbs sampling for continuous fuzzy numbers

EUSFLAT 2023 - Sept 07, 2023

Inference on $\theta_v = 8/14$

Case 1 :
$$y \in (lb, ub)$$

$$\ln \pi(y_i | \boldsymbol{\theta_y}, \ldots) \propto -\ln \Gamma(y_i^* s_i) - \ln \Gamma(s_i - s_i y_i^*) + s_i y_i^* \ln \left(\frac{m_i - lb}{ub - m_i}\right) + \ln f_Y(y; \boldsymbol{\theta_y})$$

$$\approx \ln \mathcal{B}e_{4P}(y; \lambda\sigma, \sigma - \sigma\lambda, lb, ub)$$

$$y_i^* = (y_i - lb)/(ub - lb)$$

A. Calcagnì & P. Grzegorzewski

Approximated Gibbs sampling for continuous fuzzy numbers

EUSFLAT 2023 - Sept 07, 2023

Inference on θ_v 9/14

Inference on θ_y Approximating $\pi(y|...)$

Case 1 : $y \in (lb, ub)$

$$\ln \pi(y_i | \boldsymbol{\theta_y}, \ldots) \propto - \ln \Gamma(y_i^* s_i) - \ln \Gamma(s_i - s_i y_i^*) + s_i y_i^* \ln \left(\frac{m_i - lb}{ub - m_i}\right) + \ln f_Y(y; \boldsymbol{\theta_y})$$
$$\stackrel{\simeq}{=} \ln \mathcal{B}e_{4P}(y; \boldsymbol{\lambda\sigma}, \sigma - \sigma \boldsymbol{\lambda}, lb, ub)$$

$$\{\boldsymbol{\lambda}, \boldsymbol{\sigma}\} \in (\textit{lb}, \textit{ub}) \times \mathbb{R}^+$$
:

$$\frac{\partial^{k}}{\partial y^{k}}\ln \mathcal{B}eta_{4P}(y;\lambda\sigma,\sigma-\sigma\lambda,lb,ub) = \frac{\partial^{k}}{\partial y^{k}}\left(h(y;m,s,lb,ub) + \ln f_{Y}(y;\theta_{y})\right)$$

$$k = 1,2$$

A. Calcagnì & P. Grzegorzewski

EUSFLAT 2023 - Sept 07, 2023

Case 2 :
$$y \in (lb, +\infty)$$

$$\ln \pi(y_i | \boldsymbol{\theta_y}, \ldots) \propto \ln \mathsf{B}(y_i + s_i, s_i + 2)^{-1} + \ln \left(\frac{m_i}{m_i + 1}\right) (y_i + s_i y_i) + \ln m_i + 2\ln(1 + m_i) + \\ + \ln f_Y(y; \boldsymbol{\theta_y}) \\ \approx \ln \mathcal{B}e_P(y; \lambda + \lambda\sigma, \sigma + 2)$$

A. Calcagnì & P. Grzegorzewski

Approximated Gibbs sampling for continuous fuzzy numbers

EUSFLAT 2023 - Sept 07, 2023

Inference on θ_v 9/14

Inference on $\boldsymbol{\theta}_{y}$ Approximating $\pi(y|\ldots)$

$$\boxed{\begin{array}{l} \textbf{Case 2}: y \in (lb, +\infty) \\ \hline \\ n\pi(y_i | \boldsymbol{\theta_y}, \ldots) \propto \overline{\ln B(y_i + s_i, s_i + 2)^{-1} + \ln \left(\frac{m_i}{m_i + 1}\right)(y_i + s_i y_i) + \ln m_i + 2\ln(1 + m_i) + \\ \\ + \ln f_Y(y; \boldsymbol{\theta_y}) \\ \cong \ln \mathcal{B}e_P(y; \boldsymbol{\lambda} + \lambda \sigma, \sigma + 2) \\ \hline \\ \{\lambda, \sigma\} \in (0, +\infty) \times \mathbb{R}^+: \\ \\ \frac{\partial^k}{\partial y^k} \ln Be_P(y; \boldsymbol{\lambda} + \lambda \sigma, \sigma + 2) = \frac{\partial^k}{\partial y^k} \left(g(y; m, s) + \ln f_Y(y; \boldsymbol{\theta_y})\right) \\ \\ k = 1, 2 \end{array}}$$

A. Calcagnì & P. Grzegorzewski

Approximated Gibbs sampling for continuous fuzzy numbers

EUSFLAT 2023 - Sept 07, 2023

Inference on θ_v 9/14

Aim: Assessing the quadratic posterior approximation of $\pi(y|\theta_y,...)$ via $\mathcal{B}_{e_{4P}}$ and \mathcal{B}_{e_P} distributions for both bounded and left-bounded cases.

Methods: The derivative-based density approximation (DA) is contrasted against the Adaptive Rejection Sampling (ARS) algorithm.

Measures:

- Total variation distance: $d_{TV} = \frac{1}{2} \int \left| \tilde{\pi}(y|\ldots) \pi(y|\ldots) \right| dy$
- Computation time

A. Calcagnì & P. Grzegorzewski

Case 1 :
$$y \in (lb, ub)$$

$$\begin{aligned} &f_{Y}(y; \theta_{y}) \stackrel{\text{def}}{=} \mathcal{LGNorm}(y; \mu, \phi) & \text{Logit Normal distribution} \\ &lb = 0, ub = 1 \\ &\mu \in \{-1.85, 0, 1.85\} \\ &\phi \in \{1.0, 3.5\} \\ &s \sim \mathcal{G}a(s; 45.0, 45.0/\mu_{s}) \\ &\mu_{s} \in \{5.0, 25.0, 50.0\} \end{aligned}$$

n = 2000 replicates for each combination

A. Calcagnì & P. Grzegorzewski

EUSFLAT 2023 - Sept 07, 2023

Simulation study 10/14

 $\mu_{s} \in \{5.0, 25.0, 50.0\}$

n = 2000 replicates for each combination

Calcagnì & P. Grzegorzewski

EUSFLAT 2023 - Sept 07, 2023

Approximated Gibbs sampling for continuous fuzzy numbers

Simulation study

Results - Case 1

A. Calcagnì & P. Grzegorzewski

EUSFLAT 2023 - Sept 07, 2023

Approximated Gibbs sampling for continuous fuzzy numbers

Simulation study 11/14

Results - Case 1

pproximated Gibbs sampling for continuous fuzzy numbers

EUSFLAT 2023 - Sept 07, 2023

Simulation study 11/14

Simulation study

Results - Case 2

A. Calcagnì & P. Grzegorzewski

EUSFLAT 2023 - Sept 07, 2023

Approximated Gibbs sampling for continuous fuzzy numbers

Results - Case 2

	DA	ARS
Average Accuracy	0.93	0.85
Average Log-Time	-7.27	1.15

A. Calcagnì & P. Grzegorzewski

EUSFLAT 2023 - Sept 07, 2023

Approximated Gibbs sampling for continuous fuzzy numbers

Simulation study 12/14

- A general framework for data analysis by taking the advantages of a general sampling schema for the fuzziness propagation over the outcomes of $f_Y(y; \theta_y)$
- Results are still preliminary: Further simulations coupling DA with MCMC are currently underway
- Generalizations to non-convex and trapezoidal fuzzy numbers need also to be considered

[1] COPPI, R., GIL, M. A., AND KIERS, H. A. The fuzzy approach to statistical analysis.

Computational statistics & data analysis 51, 1 (2006), 1-14.

- [2] DENŒUX, T. Maximum likelihood estimation from fuzzy data using the em algorithm. Fuzzy sets and systems 183, 1 (2011), 72–91.
- [3] GRZEGORZEWSKI, P., AND GOŁAWSKA, J.

In search of a precise estimator based on imprecise data. In 19th World Congress of the International Fuzzy Systems Association (IFSA), 12th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), and 11th International Summer School on Aggregation Operators (AGOP) (2021), Atlantis Press, pp. 530–537.

- [4] MILLER, J. W. Fast and accurate approximation of the full conditional for gamma shape parameters. *Journal of Computational and Graphical Statistics* 28, 2 (2019), 476–480.
- [5] ZHOU, H., AND HUANG, X. Bayesian beta regression for bounded responses with unknown supports.

Computational Statistics & Data Analysis 167 (2022), 107345.

antonio.calcagni@unipd.it

References 14/14

EUSFLAT 2023 - Sept 07, 2023