Estimating latent linear correlations from fuzzy frequency tables

Antonio Calcagnì

DPSS, University of Padova

13th Scientific Meeting of the Classification and Data Analysis Group (CLADAG)

September, 9-11 2021

Università degli Studi di Padova

Antonio Calcagnì

Estimating LLCs from fuzzy frequency tables (arXiv:2105.03309)

CLADAG 2021 - September 11, 2021

The latent linear correlation (a.k.a. **polychoric correlation**) is a measure of linear association commonly used when data are arranged in terms of **contingency tables**.

LLCs are frequently adopted for categorical data with the purpose of computing a **correlation** statistic useful for further analyses (e.g., **CFA**, **SEM**).

Unlike other association measures like Goodman-Kruskal's γ or Kendall's τ , the polychoric measure ρ uses a **latent probabilistic model** (e.g., *Gaussian*) as a back-end representation onto which the observed joint frequencies **N** of two categorical variables X and Y are mapped via the *Muthen's thresholds-based approach* [4].

Introduction 2/15

Sometimes contingency tables can show some degree of fuzziness.

This is most common when precise data are classified into imprecise categories (e.g., images or scenes classification, content analysis, human-based assessments) or, less common, when fuzzy data are classified using either precise or imprecise categories.

In all these cases, the observed counts $\mathbf{N} = (n_{11}, \dots, n_{rc}, \dots, n_{RC})$ in the classification grid are no longer natural numbers, but rather fuzzy numbers.

Introduction 3/15

Consequently, estimating the association ρ between two variables (X, Y) given a fuzzy contingency table \widetilde{N} requires an appropriate generalization.

In this presentation, we will generalize the maximum likelihood-based polychoric estimator to deal with fuzzy frequency tables. We will focus on estimating ρ from a pair (X, Y) of variables (the generalization to a set of J variables is straightforward).

More technical details and extended results are available in [2].

To set the problem, let (X, Y) be a pair of real random variables with $\{(x, y)_1, \ldots, (x, y)_l\}$ being a sample of length l.

Then, consider two collections of imprecise categories

$$\mathcal{C}_X = (\tilde{\mathcal{C}}_1, \dots, \tilde{\mathcal{C}}_r, \dots, \tilde{\mathcal{C}}_R)$$
 and $\mathcal{C}_Y = (\tilde{\mathcal{C}}_1, \dots, \tilde{\mathcal{C}}_c, \dots, \tilde{\mathcal{C}}_C)$

through which the observed sample is subsequently classified. The categories are represented as **fuzzy numbers** (e.g., trapezoidal) over the support $\mathcal{A} \subset \mathbb{R}$ of (X, Y) via their membership functions, e.g. $\xi_{\tilde{C}_r} : \mathcal{A} \to [0, 1]$.

Note: $C_X \times C_Y$ constitute a **fuzzy partition** of A in the sense of Ruspini [1].

Università degli Studi di Padova

Data 5/15

The process of counting how many observations fall in the joint category $(\tilde{\mathcal{C}}_r, \tilde{\mathcal{C}}_c)$ give raise to a fuzzy set \tilde{n}_{rc} with membership function $\xi_{\tilde{n}_{rc}} : \mathbb{N}_0 \to [0, 1]$.

This is a generalized natural numbers [6].

Università decli Studi di Padova

Antonio Calcagnì

CLADAG 2021 - September 11, 2021

Estimating LLCs from fuzzy frequency tables (arXiv:2105.03309)

Data 6/15

 $\xi_{\tilde{n}_{rc}}$ is defined following Bodjanova and Kalina's findings [1], which revolve around the **Zadeh's counting functions** [7]:

 $\xi_{\widetilde{n}_{rc}}(n) = \min(\mu_{\mathsf{FLC}}(n), \mu_{\mathsf{FGC}}(n)) \qquad n = 0, 1, \dots$

 $\mu_{\text{FLC}}(n) = \text{FLC}(\epsilon_{rc})$ possibility that at least *n* observations are classified in $(\tilde{c}_r, \tilde{c}_c)$ $\mu_{\text{FGC}}(n) = \text{FGC}(\epsilon_{rc})$ possibility that at most *n* observations are classified in $(\tilde{c}_r, \tilde{c}_c)$

where ϵ_{rc} is the array for the joint degree of inclusion of the observations w.r.t. $(\tilde{C}_r, \tilde{C}_c)$.

Note: The degree of inclusion $\epsilon_{\tilde{A},\tilde{B}}$ between two fuzzy sets \tilde{A} and \tilde{B} is computed as: $\epsilon_{\tilde{A},\tilde{B}} = \mathsf{card} \big(\min_x \xi_{\tilde{A}}(x),\xi_{\tilde{B}}(x)\big) / \max \big(1,\mathsf{card}(\tilde{A})\big)$

Università degli Studi di Padova

Antonio Calcagnì

Estimating LLCs from fuzzy frequency tables (arXiv:2105.03309)

CLADAG 2021 - September 11, 2021

Data 6/15

Data An example of fuzzy counts

Leftmost panel: Crisp observations (dashed black lines) along with two fuzzy categories G1 and G2. **Center/Rightmost panels**: Fuzzy counts for both G1 and G2 categories. Note that in all the panels, fuzzy membership functions are represented along the vertical axes.

Università degli Studi di Padova

Data 7/15

Data

An example of fuzzy contingency table

Graphical representation of a 3×3 fuzzy contingency table for a pair of variables.

Università degli Studi di Padova

Antonio Calcagnì

CLADAG 2021 - September 11, 2021

Estimating LLCs from fuzzy frequency tables (arXiv:2105.03309)

Data 8/15

As for the non-fuzzy case, the standard LLC-based statistical model is mean-zero unit-variance **bivariate Normal** with correlation ρ :

$$(X^*,Y^*)\sim \mathcal{N}_2(x,y;
ho)$$

which relates to the observed sample through the following condition:

$$\underbrace{(x_i^{\text{obs}} \in \tilde{\mathcal{C}}_r) \land (y_i^{\text{obs}} \in \tilde{\mathcal{C}}_c)}_{\text{fuzzy counting}} \iff (X^*, Y^*) \in \underbrace{(\tau_{r-1}^X, \tau_r^X] \times (\tau_{c-1}^Y, \tau_c^Y]}_{\text{rectangles on the latent domain}}$$

with $\tau_0^X = \tau_0^Y = -\infty$ and $\tau_R^X = \tau_C^Y = \infty$ for $r = 1, \dots, R$ and $c = 1, \dots, C$.

Parameters to be estimated: $\boldsymbol{\theta} = \{\rho, \boldsymbol{\tau}^X, \boldsymbol{\tau}^Y\} \in [-1, 1] \times \mathbb{R}^{R-1} \times \mathbb{R}^{C-1}$

UNIVERSITÀ DEGLI STUDI DI PADOVA

Antonio Calcagnì

Estimating LLCs from fuzzy frequency tables (arXiv:2105.03309)

CLADAG 2021 - September 11, 2021

Statistical model 9/15

Parameter estimation

The estimation procedure is performed by coupling the **fuzzy-EM algorithm** [3] to the **Olsson's two-stage** ML procedure [5]. The log-likelihood function is:

$$\ln \mathcal{L}(\boldsymbol{\theta}; \mathbf{N}) \propto \sum_{r=1}^{R} \sum_{c=1}^{C} n_{rc} \ln \int_{\tau_{r-1}^{\chi}}^{\tau_{r}^{\chi}} \int_{\tau_{c-1}^{Y}}^{\tau_{c}^{Y}} f_{X,Y}(x, y; \rho) \, dx dy$$

Università degli Studi di Padova

Antonio Calcagnì

Estimating LLCs from fuzzy frequency tables (arXiv:2105.03309)

CLADAG 2021 - September 11, 2021

Statistical model 10/15

Parameter estimation

The estimation procedure is performed by coupling the **fuzzy-EM algorithm** [3] to the **Olsson's two-stage** ML procedure [5] on the likelihood function:

$$\ln \mathcal{L}(\boldsymbol{\theta}; \mathbf{N}) \propto \sum_{r=1}^{R} \sum_{c=1}^{C} n_{rc} \ln \int_{\tau_{r-1}^{X}}^{\tau_{r}^{X}} \int_{\tau_{c-1}^{Y}}^{\tau_{c}^{Y}} f_{X,Y}(x, y; \rho) \, dx dy$$

Given a candidate θ' , the algorithm iterates between:

E-step
Computing $\mathbb{E}_{\theta'}\left[\ln \mathcal{L}(\theta; \mathbf{N}) | \widetilde{\mathbf{N}}\right]$ with $\hat{n}_{rc} = \mathbb{E}_{\theta'}\left[N_{rc} | \widetilde{n}_{rc} \right] = \sum_{n \in \mathbb{N}_0} n \frac{\xi_{\widetilde{n}_{rc}}(n) f_{N_{rc}}(n; \pi_{rc}(\theta))}{\sum_{n \in \mathbb{N}_0} \xi_{\widetilde{n}_{rc}}(n) f_{N_{rc}}(n; \pi_{rc}(\theta))} \quad (\text{fitered counts})$ M-step

Maximizing $\ln \mathcal{L}(\theta; \mathbf{N})$ by replacing **N** with $\hat{\mathbf{N}}$

Università degli Studi di Padova

CLADAG 2021 - September 11, 2021

Estimating LLCs from fuzzy frequency tables (arXiv:2105.03309)

Statistical model 10/15

Statistical model

Parameter estimation

The estimation procedure is performed by coupling the **fuzzy-EM algorithm** [3] to the **Olsson's two-stage** ML procedure [5] for the likelihood function:

$$\ln \mathcal{L}(\boldsymbol{\theta}; \mathbf{N}) \propto \sum_{r=1}^{R} \sum_{c=1}^{C} n_{rc} \ln \int_{\tau_{r-1}^{X}}^{\tau_{r}^{X}} \int_{\tau_{c-1}^{Y}}^{\tau_{c}^{Y}} f_{X,Y}(x, y; \rho) \, dxdy$$

Given a candidate θ' , the algorithm iterates between:

• E-step
Computing
$$\mathbb{E}_{\theta'} \left[\ln \mathcal{L}(\theta; \mathbf{N}) | \widetilde{\mathbf{N}} \right]$$
 with
 $\hat{n}_{rc} = \mathbb{E}_{\theta'} \left[N_{rc} | \widetilde{n}_{rc} \right]$
 $= \sum_{n \in \mathbb{N}_0} n \left[\frac{\xi_{\widetilde{n}_{rc}}(n) f_{N_{rc}}(n; \pi_{rc}(\theta))}{\sum_{n \in \mathbb{N}_0} \xi_{\widetilde{n}_{rc}}(n) f_{N_{rc}}(n; \pi_{rc}(\theta))} \right] \xleftarrow{\text{Density conditioned on fuzzy numbers}}$

 $f_{N_{rc}}(n;\pi_{rc}(\theta)) = \mathcal{B}in(n;\pi_{rc}(\theta))$

Università degli Studi di Padova

Antonio Calcagnì

Estimating LLCs from fuzzy frequency tables (arXiv:2105.03309)

CLADAG 2021 - September 11, 2021

Statistical model 10/15

A simulation study was run to assess the performances of the fuzzy-EM estimator for θ against two naive Olsson's estimators based on mean-based and max-based defuzzification of the data.

Università degli Studi di Padova

Antonio Calcagnì

Estimating LLCs from fuzzy frequency tables (arXiv:2105.03309)

CLADAG 2021 - September 11, 2021

Simulation study 11/15

Design

Three factors $I \in \{150, 250, 500\}$, $\rho \in \{0.15, 0.50, 0.85\}$, $R = C \in \{4, 6\}$ were varied in a complete factorial design with B = 5000 samples. Thresholds $\tau^X = \tau^Y$ were defined to be equidistant from -2 to 2.

Università degli Studi di Padova

Antonio Calcagnì

Estimating LLCs from fuzzy frequency tables (arXiv:2105.03309)

CLADAG 2021 - September 11, 2021

Simulation study 12/15

Design

Three factors $I \in \{150, 250, 500\}$, $\rho \in \{0.15, 0.50, 0.85\}$, $R = C \in \{4, 6\}$ were varied in a complete factorial design with B = 5000 samples. Thresholds $\tau^X = \tau^Y$ were defined to be equidistant from -2 to 2.

Data generation

Two-step procedure:

1 Non-fuzzy counts were generated via $n_{rc} = I \pi_{rc}(\theta)$

2 Counts were fuzzified using a probability-possibility transformation based on discrete Gamma densities: $\xi_{\tilde{n}_{rc}} = f_{\mathcal{G}_d}(\mathbf{n}; \alpha_{rc}, \beta_{rc}) / \max f_{\mathcal{G}_d}(\mathbf{n}; \alpha_{rc}, \beta_{rc}) *_{\text{further details in }[2] }$

Università degli Studi di Padova

Design

Three factors $I \in \{150, 250, 500\}$, $\rho \in \{0.15, 0.50, 0.85\}$, $R = C \in \{4, 6\}$ were varied in a complete factorial design with B = 5000 samples. Thresholds $\tau^{\chi} = \tau^{\gamma}$ were defined to be equidistant from -2 to 2.

Data generation

Two-step procedure:

1 Non-fuzzy counts were generated via $n_{rc} = I \pi_{rc}(\theta)$

2 Counts were fuzzified using a probability-possibility transformation based on discrete Gamma densities: $\xi_{\tilde{n}_{rc}} = f_{\mathcal{G}_d}(\mathbf{n}; \alpha_{rc}, \beta_{rc}) / \max f_{\mathcal{G}_d}(\mathbf{n}; \alpha_{rc}, \beta_{rc}) *_{\text{further details in [2]}}$

Outcome measures

Bias of estimates and RMSE.

Simulation study

A sketch of the results

	fEM		dML-max		dML-mean	
R = C = 4	bias	rmse	bias	rmse	bias	rmse
$\rho = 0.15$						
<i>l</i> = 150	0.03401	0.08911	-0.01653	0.11826	-0.04354	0.08824
<i>I</i> = 250	0.00455	0.05062	-0.02821	0.08106	-0.04020	0.06766
<i>l</i> = 500	0.01047	0.02974	0.00311	0.04180	-0.00743	0.03339
ho=0.50						
l = 150	0.01265	0.07236	-0.08807	0.15014	-0.17694	0.19253
<i>I</i> = 250	-0.03699	0.06349	-0.12376	0.15052	-0.17174	0.18119
<i>l</i> = 500	-0.00151	0.02688	-0.04673	0.06983	-0.08356	0.09120
ho = 0.85						
I = 150	0.00194	0.04504	-0.21865	0.25598	-0.32889	0.33729
<i>I</i> = 250	-0.00285	0.02903	-0.17042	0.19816	-0.25843	0.26540
<i>l</i> = 500	-0.00104	0.01586	-0.10519	0.12382	-0.16418	0.16884

Results for ρ in the R = C = 4 case. Note that fEM indicates the fuzzy estimator whereas dML-max and dML-mean indicate the naive estimators.

UNIVERSITÀ DEGLI STUDI DI PADOVA

Antonio Calcagnì

Estimating LLCs from fuzzy frequency tables (arXiv:2105.03309)

CLADAG 2021 - September 11, 2021

Simulation study 13/15

Overall, results indicate that the fuzzy estimator fEM outperformed the naive estimators dML-max and dML-mean in terms of bias and RMSE.

The results for the condition R = C = 6 largely resembled those obtained for simplest R = C = 4 case.

All the approaches showed similar results in estimating the thresholds $\{\tau^{X}, \tau^{Y}\}$ (note that the primary interest laid on estimating ρ).

For extended results, see [2].

- When data are represented in terms of fuzzy contingency tables, the standard ML estimators should be generalized to cope with this type of data.
- The proposed fuzzy-EM estimator works with both crisp observations/fuzzy categories and fuzzy observations/crisp or fuzzy categories. In this sense, it encompasses the standard crisp observations/crisp categories as a special case.
- Real-world applications of the fuzzy-EM estimator for polychoric correlations (e.g., inter-rater agreement) are further discussed in [2].

[1] BODJANOVA, S., AND KALINA, M.

Cardinalities of granules of vague data.

In Proceedings of IPMU2008, Torreliminos (Malaga), June 22-27 2008 (2008), L. Magdalena, M. Ojeda-Aciego, and J. Verdegay, Eds., pp. 63–70.

[2] CALCAGNÌ, A.

Estimating latent linear correlations from fuzzy frequency tables. arXiv:2105.03309[stat.ME].

[3] DENŒUX, T.

Maximum likelihood estimation from fuzzy data using the em algorithm. Fuzzy Sets and Systems 183, 1 (2011), 72–91.

[4] MUTHÉN, B. O., AND SATORRA, A.

Technical aspects of muthén's liscomp approach to estimation of latent variable relations with a comprehensive measurement model. Psychometrika 60. 4 (1995), 489–503.

- [5] OLSSON, U. Maximum likelihood estimation of the polychoric correlation coefficient. *Psychometrika* 44, 4 (1979), 443–460.
- [6] WYGRALAK, M. Questions of cardinality of finite fuzzy sets. Fuzzy Sets and Systems 102, 2 (1999), 185–210.
 - ZADEH, L. A. A computational approach to fuzzy quantifiers in natural languages. In *Computational linguistics*. Elsevier, 1983, pp. 149–184.

antonio.calcagni@unipd.it

Antonio Calcagnì

[7]

CLADAG 2021 - September 11, 2021

Estimating LLCs from fuzzy frequency tables (arXiv:2105.03309)

References 15/15