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Abstract. Statistical data analysis often entails various uncertainties.
Fuzzy numbers help address these complexities, enabling generalized sta-
tistical methods. We propose enhancing fuzzy estimators by integrating
a general epistemic mechanism. Our approach, validated through simu-
lation studies, offers a flexible solution for fuzzy data analysis.
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1 Introduction

Statistical data analysis frequently involves addressing multiple sources of un-
certainty simultaneously. This is particularly evident in the analysis of data from
social surveys, where both random components (e.g., sample variation) and sys-
tematic components (e.g., such as subjective responses) are intertwined [1]. To
disentangle these various sources of uncertainty, fuzzy numbers can be employed,
and statistical techniques need to be extended to accommodate the fuzzy rep-
resentation of the data. Within this framework, specialized methods, like fuzzy
Expectation-Maximization (fEM), have been devised to ensure estimation and
inference. Nonetheless, due to the construction of epistemic fuzzy estimators,
they can suffer from excessive variance [3]. In this contribution, we propose a
solution which incorporates the general mechanism assumed to underlie the gen-
eration of continuous fuzzy numbers into the definition of fuzzy estimators. The
idea relies upon the use of a conditional probabilistic framework that connects
the parameters of fuzzy numbers (i.e., the systematic component) to the observed
statistical model utilized for data analysis. Consequently, estimation and infer-
ence are conducted using the Gibbs sampler-based approach, wherein the full
conditional distribution is approximated by sampling from a quadratic approx-
imation of the target posterior distribution [4]. This contribution is structured
as follows. Section 2 briefly illustrates the problem we are facing alongside the
proposed solution. Section 3 describes the Gibbs sampler derivations whereas
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Section 4 illustrates the results of a short simulation study to check the approx-
imation used into the Gibbs schema. Section 5 concludes this short article by
providing a summary of its findings.

2 A conditional sampling schema

2.1 Statement of the problem

Let 𝑌1, . . . , 𝑌𝑛 be 𝑛 independent continuous random variables and ỹ = (𝑦1, . . . , 𝑦𝑛)
a sample of fuzzy observations. The vector 𝒚 is a blurred version of y because
of epistemic or post-sampling uncertainty-based processes. The interest lies in
studying 𝑓𝑌1 ,...,𝑌𝑛 (y; 𝜽𝒚) with the purpose of making inference on 𝜽𝒚 given the
fuzzy sample 𝒚. From the epistemic perspective on fuzzy statistics, fuzzy ob-
servations can be conceptualized as stochastic outcomes influenced by varying
degrees of non-random and systematic uncertainty, which obscure the actual,
unknown realizations y. In this context, each fuzzy observation 𝑦𝑖 consists of
mode and precision {𝑚𝑖 , 𝑠𝑖} of a Beta-type fuzzy number, which is employed as
a general template for representing continuous and unimodal fuzzy numbers [1].
Figure 1 shows two instances of the Beta-type fuzzy number.1
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Fig. 1. Some examples of Beta fuzzy sets: (a) bounded case and (b) left-bounded case.

Our objective is to introduce a conditional sampling framework designed to be
general enough to handle numerous empirical scenarios involving fuzzy data
analysis.

1It is important to highlight that Beta-type fuzzy numbers are flexible and parsi-
monious, requiring only two parameters, while handling with both bounded or semi-
bounded variables. Additionally, they serve to generalize triangular fuzzy numbers as
well [1].
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2.2 Proposed solution

Our main idea revolves around formalizing the two-stage process that governs
the generation of (epistemic) fuzzy numbers. Since these stages interact with
each other, the concept involves utilizing a conditional probabilistic framework
that connects the parameters of fuzzy numbers (such as modes, spreads, and
membership function information if available) to the random outcomes of the
model 𝑓𝑌 (𝑦; 𝜽). For the general beta representation of fuzzy numbers, the two-
stage sampling framework for fuzzy numbers with modes 𝑚𝑖 and precision 𝑠𝑖 can
be expressed as follows

𝑦𝑖 ∼ 𝑓𝑌 (𝑦; 𝜽𝒚), (1)

𝑠𝑖 ∼ G𝑎(𝑠;𝛼𝑠 , 𝛽𝑠), (2)

𝑚𝑖 |𝑠𝑖 , 𝑦𝑖 ∼
{
B𝑒4𝑃 (𝑚; 𝑠𝑖𝑦𝑖 , 𝑠𝑖 − 𝑠𝑖𝑦1, 𝑙𝑏, 𝑢𝑏) if 𝑦𝑖 ∈ (𝑙𝑏, 𝑢𝑏),
B𝑒𝑃 (𝑚; 𝑦𝑖 + 𝑦𝑖𝑠𝑖 , 𝑠𝑖 + 2) if 𝑦𝑖 ∈ (0, +∞).

(3)

In Eq. (1), 𝑓𝑌 (𝑌 ; 𝜽𝒚) depicts the random variable governing the non-fuzzy sam-
pling process, with its parameters expressed as a function of external covariates
𝜽𝒚 = 𝑔−1 (X𝜷), as in the case of Generalized Linear Models (GLMs). In Eq. (2),
the Gamma random variable G𝑎 with parameters 𝛼𝑠 > 0 and 𝛽𝑠 > 0 is rep-
resented, which models the precision (or spread) of the fuzzy number. In the
simplest case, 𝑠𝑖 is independent of 𝑦𝑖, although this can be generalized to cases
where 𝑠𝑖 depends on 𝑦𝑖 or external covariates as well. Finally, Eq. (3) represents
the random variable governing the mode of the fuzzy number, as a function of
the true unobserved outcome 𝑦𝑖 and the spread 𝑠𝑖. Depending on the context
being modeled, it can be defined as a four-parameter Beta distribution (𝐵𝑒4𝑃)
or a Beta-prime distribution (𝐵𝑒𝑃). Note that, in both cases, with the mode-
precision parametrization being adopted, the propagation of fuzziness through
Eq. (3) results in (𝑚1, . . . , 𝑚𝑛) spreading out near E[𝑌 ]. Figure 2 illustrates an
example of how fuzziness acts on the true unobserved random realization.2

3 Inference on 𝜽𝒚

Given the conditional sampling structure describing the fuzzification process of
the outcomes of 𝑌1, . . . , 𝑌𝑛, a natural way to make inference about 𝜽𝒚 involves
a kind of deblurring procedure, which uses 𝒚 instead of the unobserved real-
izations y. Assuming the observed data is a collection of modes and precisions

2Although several choices could have been made for representing the spread (Eq. 2)
and mode (Eq. 3) components, the Gamma and Beta distributions exhibit some conve-
nient characteristics in this context. Particularly, Beta distributions, while simplifying
the calculus used to obtain the final estimators, also demonstrate great flexibility in
modeling unimodal and bounded (or left-bounded) random phenomena. Similarly, the
Gamma distribution ensures the positivity of the spread component at a low compu-
tational cost.
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Fig. 2. Examples of the Beta-type 1 fuzzy numbers 𝜉 𝑦̃ (green curves) masking the true
unobserved realizations 𝑦 (dashed vertical gray lines).

D = ({𝑚1, . . . , 𝑚𝑛}, {𝑠1, . . . , 𝑠𝑛}), the idea is that of using the Gibbs sampler
algorithm. It allows for sampling from the posterior distribution 𝜋(𝜽𝒚 , y|D) by
iteratively drawing samples from the conditional posterior distributions (𝑡 > 1)

y(𝑡 ) ∼ 𝜋(y|m, s, 𝜽 (𝑡−1)
𝑦 ), (4)

𝜽𝒚
(𝑡 ) ∼ 𝜋(𝜽𝒚 |m, s, 𝒚 (𝑡 ) ). (5)

These are obtained by properly re-arranging the joint distribution as follows

𝑓 (D, y; 𝜽𝒚) = 𝑓 (D|y; 𝜽𝒚) 𝑓 (y; 𝜽𝒚)
= 𝑓 (m|y; 𝜽𝒚) 𝑓 (s|y; 𝜽𝒔) 𝑓 (y; 𝜽𝒚),

where the prior distribution 𝑓 (𝜽𝒚) has been omitted for the sake of simplicity. It
is worth noting that due to the independence between 𝑌𝑖 and 𝑆𝑖, the parameters
𝜽𝑠 - in the case of Eq. (3), 𝜽𝒔 = {𝛼𝑠 , 𝛽𝑠} - can be estimated straightforwardly
via maximum likelihood from s. As Eqs. (1)-(3) are quite general and may not
lend themselves to analysis within a conjugate Bayesian framework, sampling
from the conditional posteriors 𝜋(y|𝜽𝒚 ,D) and 𝜋(𝜽𝒚 |y,D) could pose challenges.
Therefore, we opted to adopt a hybrid solution where the step in Eq. (4) is
realized via MCMC (e.g., Block sampling algorithm [5]), the step in Eq. (5)
is realized via quadratic posterior approximation [4] instead, as described in
Section 3.1.

3.1 Approximating 𝝅(𝒚 | . . .)

The quadratic approximation is obtained by matching the parameters of the
log posterior density 𝜋(𝑦 | . . .) with the first 𝐾 derivatives of a given proposal
distribution, which can be chosen according to its feasibility to represent the
unnormalized posterior target.
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Case 1: 𝑦𝑖 ∈ (𝑙𝑏, 𝑢𝑏) In the first case, the proposal posterior density is a four-
parameter Beta distribution with mode 𝜆 ∈ (𝑙𝑏, 𝑢𝑏) and precision 𝜎 ∈ R+. In
particular,

ln 𝜋(𝑦𝑖 |𝜽𝒚 , . . .) ∝ − ln Γ(𝑦∗𝑖 𝑠𝑖) − ln Γ(𝑠𝑖 − 𝑠𝑖𝑦∗𝑖 ) + 𝑠𝑖𝑦∗𝑖 ln
(
𝑚𝑖 − 𝑙𝑏
𝑢𝑏 − 𝑚𝑖

)
︸                                                           ︷︷                                                           ︸

ℎ (𝑦;𝑚,𝑠,𝑙𝑏,𝑢𝑏)

+ ln 𝑓𝑌 (𝑦; 𝜽𝒚)

≈ lnB𝑒4𝑃 (𝑦;𝜆𝜎, 𝜎 − 𝜎𝜆, 𝑙𝑏, 𝑢𝑏),

where the unknown proposal distribution parameters are found by solving the
following equations (𝐾 = 2; 𝑘 = 1, . . . , 𝐾)

𝜕𝑘

𝜕𝑦𝑘
lnB𝑒4𝑃 (𝑦;𝜆𝜎, 𝜎 − 𝜎𝜆, 𝑙𝑏, 𝑢𝑏) = 𝜕𝑘

𝜕𝑦𝑘

(
ℎ(𝑦;𝑚, 𝑠, 𝑙𝑏, 𝑢𝑏) + ln 𝑓𝑌 (𝑦; 𝜽𝒚)

)
,

The solutions 𝜆 and 𝜎̂ are then used into the first Gibbs step

𝑦 (𝑡 )𝑖 ∼ 𝐵𝑒4𝑃 (𝑦;𝜆𝜎̂, 𝜎̂ − 𝜎̂𝜆, 𝑙𝑏, 𝑢𝑏).

Case 2: 𝑦𝑖 ∈ (𝑙𝑏, +∞) In the second case, the proposal posterior density is a Beta
prime distribution with mode 𝜆 ∈ (𝑙𝑏, +∞) and precision 𝜎 ∈ R+. In particular,

ln 𝜋(𝑦𝑖 |𝜽𝒚 , . . .) ∝ lnB(𝑦𝑖 + 𝑠𝑖 , 𝑠𝑖 + 2)−1 + ln

(
𝑚𝑖

𝑚𝑖 + 1

)
(𝑦𝑖 + 𝑠𝑖𝑦𝑖) + ln𝑚𝑖 + 2 ln(1 + 𝑚𝑖)︸                                                                                        ︷︷                                                                                        ︸

𝑔 (𝑦;𝑚,𝑠)

+ ln 𝑓𝑌 (𝑦; 𝜽𝒚)

≈ lnB𝑒𝑃 (𝑦;𝜆 + 𝜆𝜎, 𝜎 + 2),

where the unknown proposal distribution parameters are found by solving the
following equations (𝐾 = 2; 𝑘 = 1, . . . , 𝐾)

𝜕𝑘

𝜕𝑦𝑘
ln 𝐵𝑒𝑃 (𝑦;𝜆 + 𝜆𝜎, 𝜎 + 2) = 𝜕𝑘

𝜕𝑦𝑘

(
𝑔(𝑦;𝑚, 𝑠) + ln 𝑓𝑌 (𝑦; 𝜽𝒚)

)
.

Similarly to the previous case, the solutions 𝜆 and 𝜎̂ are used into the first Gibbs
step to realize the sampling process

𝑦 (𝑡 )𝑖 ∼ 𝐵𝑒𝑃 (𝑦;𝜆 + 𝜆𝜎̂, 𝜎̂ + 2).

4 Simulation study

In this section, we briefly present the findings of a simulation study conducted
to evaluate the quadratic posterior approximation of 𝜋(𝑦 |𝜽𝒚 , . . .) using B𝑒4𝑃 and
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Fig. 3. Simulation study: Reconstructed densities (on average) on Case 1 (panels A)
and Case 2 (panels B) in the best and worst result for both DA (red color) and ARS
(blue color) algorithms.

B𝑒𝑃 distributions for both bounded and left-bounded cases.3 In particular, the
derivative-based approximation (DA) has been contrasted against the simple but
still effective Adaptive Rejection Sampling (ARS) algorithm for univariate densi-
ties [2]. Two measures have been used to assess the process of the approximation,
namely the computation time (in log scale) and the total variation distance.

Two different designs have been used to evaluate the bounded 𝑦 ∈ (𝑙𝑏, 𝑢𝑏)
and left-bounded 𝑦 ∈ (𝑙𝑏, +∞) cases. In particular, in the first case we have used a
Logit-Normal distribution for the non-fuzzy model 𝑓𝑌 (𝑦; 𝜽𝒚) = LG𝑁𝑜𝑟𝑚(𝑦; 𝜇, 𝜙),
with 𝜇 ∈ {−1.85, 0, 1.85} and 𝜙 ∈ {1.0, 3.5}. The simplest constraint 𝑙𝑏 = 0, 𝑢𝑏 = 1
has been considered. Instead, in the second case we have used the Gamma distri-
bution as a model of the non-fuzzy component 𝑓𝑌 (𝑦; 𝜽𝒚) = G𝑎(𝑦;𝛼, 𝛽), with 𝛼 ∈
{1.0, 1.5, 3.0} and 𝛽 ∈ {4.9.0, 9.0}. In both cases, the independent spread com-
ponent has been modeled as 𝑠 ∼ G𝑎(𝑠; 45.0, 45.0/𝜇𝑠), with 𝜇𝑠 ∈ {5.0, 25.0, 50.0}
representing high-to-low fuzziness, whereas 𝑛 = 2000 has been set for each com-
bination of simulation factors.

Figures 4-5 show the simulation results across simulation factors for both
DA and ARS algorithms. Overall, for the Case 1, the average reconstruction
accuracy is 0.97 for DA and 0.95 for ARS, with the average computation log-
time being extremely faster for DA (−6.97) then ARS (0.67). Similarly, for the
Case 2, the average reconstruction accuracy is 0.93 for DA and 0.85 for ARS,
with the average computation log-time being in line with the previous case (DA:
−7.27; ARS: 1.15). Finally, Figure 3 illustrates the reconstructed densities in the
best and worst result for both algorithms.

5 Conclusions

In this contribution, we proposed a conditional sampling schema for making
inference in statistical analyses based on continuous and unimodal fuzzy data.

3The overall results concerning the ability of the proposed schema to efficiently
sample from the posterior density 𝜋(𝜽𝒚 , y|D) are left out for the sake of limited space.
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Fig. 4. Simulation study: Case 1 - Total variation distance for each combination of the
simulation design for DA (red color) and ARS (blue color) algorithms.
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Fig. 5. Simulation study: Case 2 - Total variation distance for each combination of the
simulation design for DA (red color) and ARS (blue color) algorithms.

Fuzzy numbers offer a means to address these complexities, but traditional ap-
proaches may suffer from high variance. To mitigate this, we propose integrating
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a general approach which connects fuzzy parameters to observed statistical mod-
els, enabling estimation and inference using the Gibbs sampler-based approach.
The proposed solution is based on a hybrid Metropolis within Gibbs schema,
where a quadratic-based approximation is also used to mitigate the computa-
tion burden of the algorithm. A simulation study has been used to assess the
quality of the approximation step in two cases of parameters estimation, one
involving the Log-Normal distribution and the other involving the Gamma dis-
tributions. The results highlights the effectiveness of the proposed solution if
compared against the simple but still efficient Adaptive Rejection Sampling al-
gorithm.
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