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Abstract
This research concerns the estimation of latent linear or polychoric correlations from
fuzzy frequency tables. Fuzzy counts are of particular interest to many disciplines
including social and behavioral sciences and are especially relevant when observed
data are classified using fuzzy categories—as for socioeconomic studies, clinical
evaluations, content analysis, inter-rater reliability analysis—orwhen imprecise obser-
vations are classified into either precise or imprecise categories—as for the analysis
of ratings data or fuzzy-coded variables. In these cases, the space of count matrices is
no longer defined over naturals and, consequently, the polychoric estimator cannot be
used to accurately estimate latent linear correlations. The aim of this contribution is
twofold. First, we illustrate a computational procedure based on generalized natural
numbers for computing fuzzy frequencies. Second, we reformulate the problem of
estimating latent linear correlations from fuzzy counts in the context of expectation–
maximization-based maximum likelihood estimation. A simulation study and two
applications are used to investigate the characteristics of the proposed method. Over-
all, the results show that the fuzzy EM-based polychoric estimator is more efficient to
deal with imprecise count data as opposed to standard polychoric estimators that may
be used in this context.
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A. Calcagnì

1 Introduction

The latent linear correlation (LLC) is a measure of bivariate association which is
usually adopted when variables are measured at an ordinal level or when data are
available in the form of frequency or contingency tables. Because LLCs are quite
oftenused in analyzing categorical orderedvariables, they are also knownas polychoric
correlations [59]. Latent linear or polychoric correlations differ fromothermeasures of
association such as Goodman and Kruskal’s γ or Kendall’s τ in that they are based on
a latent continuous parametric model according to which LLCs behave. Given a set of
J variables, LLCs are computed pairwise for each pair j, k of variables by considering
their joint frequencies N jk

R×C = (n jk
11, . . . , n

jk
rc , . . . , n

jk
RC ) over a R jk × C jk partition

space of the variables’ domain. The general idea is to map the observed counts N jk
R×C

to the real domain of the bivariate latent density model via the Muthen’s thresholds-
based approach [57], under the constraint that the volumes of the rectangles of the
latent density should be equal to the observed frequencies. In doing so, changing
the covariance parameter of the latent model will change the probability distribution
over the latent rectangles and hence the probability masses over the cells of N jk

R×C .
Although several parametric models are available for estimating LLCs (e.g., elliptical,
skew-Gaussian, Copula-based models; see [47, 63, 67]), the standard formulation
based on the Gaussian density with zero means and latent correlationsR jk

R×C is strong
enough to be of practical use for many empirical applications. (For a recent study, see
[39, 56].) Some of these include inter-rater agreement [60], reliability measurement
[11, 70, 81], ordinal CFA and SEM [50, 58, 78], fuzzy cluster analysis [73], and
polychoric PCA for dimensionality reduction in discrete data [45].

Fuzzy frequency or contingency tables are of particular concern across several dis-
ciplines including social, behavioral, and health sciences. Overall, there are two main
situationswhich give rise to fuzzy frequencies, namelywhen precise data are classified
into imprecise categories or, in the opposite case, when fuzzy data are classified into
either precise or imprecise categories. Examples of the first case may be found in stud-
ies involving socioeconomic variables (e.g., income, labor flushes, employment) [19,
77], images or scenes classification [26, 38], content analysis [43], reliability analyses
[23], evaluation of user-based experiences [46], multivariate analysis of qualitative
data [3, 8], spatial distributional data [31], and human-based risk assessment [20]. By
contrast, examples of the second case are most common in studies involving rating
scales-based variables such as satisfaction, quality, attitudes, and motivation [12, 21].
What both of these situations have in common is that the R jk × C jk space consti-
tutes a fuzzy partition and, consequently, observed counts in the classification grid
are no longer natural numbers. There have been a number of studies that have tried
to deal with fuzzy contingency tables and fuzzy association measures. For instance,
Kahraman et al. [42] proposed some nonparametric tests generalized to the case of
fuzzy data, Grzegorzewski [32] studied fuzzy hypotheses testing based on fuzzy ran-
dom variables, Denœux [24] proposed a rank-sum test based on fuzzy partial ordering
and introduced a modelization of fuzzy statistical significance test, Hryniewicz [36]
generalized the Goodman and Kruskal’s γ measure to the case of fuzzy observa-
tions arranged into contingency tables, and Taheri et al. [69] presented the analysis
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of contingency tables for both fuzzy observations/crisp categories and crisp observa-
tions/fuzzy categories cases along with a fuzzy generalization of association measures
based on frequencies. Although they differ in some respects, all of them generalize
the analysis of contingency tables to the fuzzy case either by the Zadeh’s extension
principle or by the α-cuts-based calculus [72]. Fuzzy statistics aside, a more recent
strategy to incorporate imprecision and indeterminacy in count data is that of using a
neutrosophic-based generalization of the standard chi-square and F-statistics [4, 5].

Based on this research stream, this article focuses on estimating latent linear
correlations from fuzzy frequency tables, which include both the cases of crisp obser-
vations/fuzzy categories and fuzzy observations/fuzzy or crisp categories. Unlike the
aforementioned studies, we develop our results by generalizing the standard LLC
problem to cope with fuzzy frequencies under the general fuzzy maximum likelihood
framework [24, 62]. In particular, we define the fuzzy frequency table ˜N jk

R×C in terms
of fuzzy cardinality and generalized natural numbers first, and then we extend the
sample space of the LLC model to deal with fuzzy counts ñ jk

11, . . . , ñ
jk
rc , . . . , ñ

jk
RC . In

doing so, the fuzziness of the observations enters the model as a systematic and non-
random component, while the model’s parameters are still crisp (i.e., the estimated
latent correlation matrix̂R jk

R×C is a non-fuzzy quantity). This offers an attractive solu-
tion to the problem of estimating LLCs with fuzzy information, with the additional
benefit that statistical models that use the LLCs statistic as input data (e.g., CFA, PCA,
SEM) do not need any further generalization to cope with fuzzy data.

The remainder of this article is structured as follows. Section 2 introduces the con-
cept of fuzzy frequency through fuzzy cardinalities and generalized natural numbers.
Section 3 describes the fuzzy LLCs model and its characteristics in terms of parame-
ters estimation and interpretation. Section 4 reports the results of a simulation study
performed to assess the finite sample properties of the fuzzy LLCs model as com-
pared with standard defuzzification-based estimation methods. Section 5 describes
the application of the proposed method to two real case studies, and Sect. 6 concludes
the article by providing final remarks and suggestions for further extensions of the
current findings. All the materials like algorithms and datasets used throughout the
article are available to download at https://github.com/antcalcagni/fuzzypolychoric/.

2 Fuzzy Frequencies

2.1 Preliminaries

A fuzzy subset Ã of a universal setA ⊂ R can be defined bymeans of its characteristic
function ξ

˜A : A → [0, 1]. It can also be expressed as a collection of crisp subsets
called α-sets, i.e., Ãα = {x ∈ A : ξ

˜A(x) > α} with α ∈ (0, 1]. If the α-sets
of Ã are all convex sets, then Ã is a convex fuzzy set. The support of Ã is A0 =
{x ∈ A : ξ

˜A(x) > 0} and the core is the set of all its maximal points A1 = {x ∈
A : ξ

˜A(x) = maxz∈A ξ
˜A(z)}. In case maxx∈A ξ

˜A(x) = 1, then Ã is a normal
fuzzy set. If Ã is a normal and convex subset of R, then Ã is a fuzzy number (also
called fuzzy interval). The quantity l( Ã) = sup A0 − inf A0 is the length of the
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A. Calcagnì

support of the fuzzy set Ã. The simple cardinality of a fuzzy set Ã is defined as
| Ã| = ∫

A ξ
˜A(x) dx . Given two fuzzy sets Ã, B̃, the degree of inclusion of Ã in B̃ is

ε Ã B̃ = ∣

∣minx∈A
(

ξ
˜A(x), ξ

˜B(x)
)∣

∣

/

max(1, | Ã|), with ε Ã B̃ ∈ [0, 1]. The case ε Ã B̃ = 1
indicates that Ã is fully included in B̃. The class of all normal fuzzy numbers is denoted
by F(R). Fuzzy numbers can conveniently be represented using parametric models
that are indexed by some scalars. These include a number of shapes like triangular,
trapezoidal, Gaussian, and exponential fuzzy sets [34]. A relevant class of parametric
fuzzy numbers are the so-called LR-fuzzy numbers [27] and their generalizations [13,
70]. The trapezoidal fuzzy number is one of the most common fuzzy set used in many
applications, and it is parameterized using four parameters as follows:

ξ
˜A(x) = 1(c1,c2)(x) +

(

x − xl
c1 − xl

)

1(xl ,c1)(x) +
(

xu − x

xu − c2

)

1(c2,xu)(x) (2.1)

with xl , xu, c1, c2 ∈ R being lower, upper bounds, and first and second modes, respec-
tively. The symbol 1(a,b)(x) denotes the indicator function in the interval (a, b).
Interestingly, the trapezoidal fuzzy set includes the triangular (if c1 = c2) and rectan-
gular (if xl = c1, c2 = xu) fuzzy sets as special cases. A degenerated fuzzy number Å
is a particular fuzzy setwith ξ

˜A(c) = 1 and ξ
˜A(x) = 0 for x �= c, x ∈ A. Note that rect-

angular and degenerated fuzzy numbers can be adopted to represent crisp categories
and crisp observations, respectively. When a probability space is defined over A, the
probability of a fuzzy set Ã can be defined as P( Ã) = ∫

A ξ
˜A(x)dP (Zadeh’s probabil-

ity). Similarly, the joint probability of two fuzzy sets is P( Ã B̃) = ∫

A ξ
˜A(x)ξ

˜B(x)dP
under the rule ξ Ã B̃(x) = ξ

˜A(x)ξ
˜B(x) (independent fuzzy sets) [52].

2.2 Fuzzy Granules

Let S = { Ã1, . . . , Ãi , . . . , ÃI } be a sample of I fuzzy or non-precise observations
with Ãi being a fuzzy number as defined by Eq. (2.1). Then, the interval R(S) =
[r0, r1] ⊂ R is the range of the fuzzy sample where r0 = min{A†

01
, . . . , A†

0I
} and

r1 = max{A†
01

, . . . , A†
0I

}, with A†
0i
being the infimum of the support set A0i computed

for the i th fuzzy observation. A collection G = {G̃1, . . . , G̃c, . . . , G̃C } ofC fuzzy sets
is a fuzzy partition ofR(S) if the following two properties hold (i) maxi=1,...,I l( Ãi ) ≤
minc=1,...,C l(C̃c) and (ii)

∑C
c=1 ξ

˜Gc
(x) = 1 (Ruspini’s partition) [9, 29]. The fuzzy

sets in G are also called granules of R(S). The evaluation of the amount of fuzzy
observations in a granule G̃c is called cardinality (scalar or fuzzy) and can be used
to compute fuzzy frequencies or counts for a partition G given a sample S. Figure
1 (left-side panels) shows an example of fuzzy granulation for both fuzzy and crisp
observations.

2.3 Fuzzy Counts as Generalized Natural Numbers

Let x̃ j = {x̃ j
1 , . . . , x̃ j

i , . . . , x̃ j
I } and x̃k = {x̃ k1 , . . . , x̃ ki , . . . , x̃ kI } be two samples of

fuzzy observations and g̃ j = {g̃ j
1 , . . . , g̃

j
c , . . . , g̃

j
C } and g̃k = {g̃k1, . . . , g̃kr , . . . , g̃kR}
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be two fuzzy partitions of the domains R(x̃ j ) and R(x̃k). Given a pair of granule

(g̃r , g̃c), a fuzzy or imprecise count for the joint sample (x̃ j , x̃k) is a fuzzy set ñ jk
rc

with membership function ξ
jk
ñrc

: N0 → [0, 1]. As it is defined over natural numbers,
a fuzzy count is a finite generalized natural number for which extended operations
are available (e.g., addition, multiplication) [75]. Analogously to fuzzy intervals, the
class of all fuzzy counts is denoted as F(N0). There are different choices for the
computation of ξ

jk
ñrc

(e.g., see [22, 36, 69, 71, 72]). In this contribution, we will follow
the findings of [9, 10] which are based on Zadeh’s fuzzy counting functions [79] and
fuzzy cardinalities [14]. More precisely, let

ε
jk
rc =

(

ε
jk
rc1 , . . . , ε

jk
rci , . . . , ε

jk
rcI

)

be the vector of joint degrees of inclusion for the rcth granule where

ε
jk
rci = min

(

ε
j
ri , ε

k
ci

)

,

ε
j
ri = ∣

∣ min
x∈R(x̃ j )

(ξx̃ j i (x), ξg̃r (x))
∣

∣

/

max(1, |x̃ j
i |),

εkci = ∣

∣ min
x∈R(x̃k )

(ξx̃ki (x), ξg̃c (x))
∣

∣

/

max(1, |x̃ ki |),

with |.| being the simple cardinality according to the definition given in Sect. 2.1. For
n ∈ N0, the fuzzy count is as follows:

ξ
jk
ñrc

(n) = min (μFLC(n), μFGC(n)) (2.2)

with μFLC(n) and μFGC(n) being the output of the Zadeh’s fuzzy counting functions
[79]. The following calculus can be used forμFLC(n) andμFGC(n). First, compute the

square matrix of differences ZI×I =
(

ε
jk
rc 1TI − 1I (ε

jk
rc )

T
)

, with 1I being an I × 1,

vector of all ones. Then, for each i = 1, . . . , I the vector zI×1 is computed, with zi =
1TI H(Z,i ) and H(x) being the Heaviside step function defined by H(x) := {0 if x <

0 , 1 if x ≥ 0}. The vector z = (z1, . . . , zi , . . . , zI ) contains the sums of the output
of the Heaviside function applied column-wise on Z. Finally, for n = 0, 1, 2, . . . , I
the Zadeh’s counting functions are as follows:

μFGC(n) = max
(

H(z − n) � ε
jk
rc

)

,

μFLC(n) = 1 − max
(

H(z − n + 1) � ε
jk
rc

)

, (2.3)

where � is the element-wise product, whereasH(x) is the Heaviside function defined
as above. Thus, the membership function of ñ jk

rc is defined as the minimum among
the degree of possibility that at least n elements from (x̃ j , x̃k) are included in the rcth
granule (FGC count) and the degree of possibility that at most n elements are included
in the rcth granule (FLC count). By applying Eqs. (2.2) and (2.3) for each pair of
granules (g̃1, g̃1), . . . , (g̃r , g̃c), . . . , (g̃R, g̃C ), one obtains the fuzzy frequency matrix
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A. Calcagnì

Fig. 1 Examples of fuzzy granules and fuzzy counts for A fuzzy triangular observations and fuzzy trape-
zoidal categories and B crisp observations and fuzzy trapezoidal categories. Note that in both cases
frequencies are represented as generalized natural numbers

˜N jk
R×C . Note that the resulting fuzzy set ξñrc may not be normal, i.e., maxn ξñrc(n) ≤ 1,

and a post hoc normalization should be applied if normal fuzzy sets were needed.

Finally, it is relevant to point out that Eqs. (2.2) and (2.3) are quite general and can be
applied for the cases of fuzzy observations/fuzzy categories, crisp observations/fuzzy
categories, and fuzzy observations/crisp categories. In this context, crisp observations
and crisp categories can be realized bymeans of degenerated fuzzy sets and rectangular
fuzzy sets, respectively. For the special case of crisp observations/crisp categories,
the resulting fuzzy set ξñrc is degenerate. Figure 1 shows an exemplary case of fuzzy
frequencies for fuzzy observations and fuzzy categories (Fig. 1A,middle and rightmost
panels) and crisp observations and fuzzy categories as well (Fig. 1B, middle and
rightmost panels).

3 LLCs for Fuzzy Frequency Tables

In this section, we describe the statistical procedure for computing latent linear corre-
lations when observations are in the general form of fuzzy frequencies.

3.1 Model

Let X = (X j
i , X

k
i ) i = 1, . . . , I be a collection of pairs of continuous randomvariables

( j, k ∈ {1, . . . , J }, j �= k) following the bivariate Gaussian distribution centered at
zero with correlation parameter ρ jk ∈ [−1, 1] and density
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Algorithm 1 Computing fuzzy frequencies

procedure Main(x̃ j , x̃k , g̃ j , g̃k )
for r = 1, . . . , R and c = 1, . . . ,C do

ε
j
r ← DoI(x̃ j , g̃r ) 
 Compute degrees of inclusion

εkc ← DoI(x̃k, g̃c)
ε
jk
rc ← min(ε j

r , ε
k
c) 
 Compute joint degree of inclusion

Z ← (ε
jk
rc1TI − 1TI ε

jk
rc )

for i = 1, . . . , I do
z[i] ← 1TI H(Z [:, i])

end for
for n = 0, . . . , I do

μFGC[n] ← max(H(z − n) � ε
jk
rc ) 
 Fuzzy counting functions

μFLC[n] ← 1 − max(H(z − (n + 1)) � ε
jk
rc )

ξ
jk
ñrc

[n] ← min(μFLC[n], μFGC[n]) 
 Compute fuzzy frequencies

end for
end for
return ξñ

jk

end procedure

procedure DoI(x̃, g̃)
for i = 1, . . . , I do

ε[i] ← ∫

x min
(

ξx̃[i](x), ξg̃(x)
)

dx
/

max
(

1,
∫

x ξx̃[i](x)dx
) 


Ratio of fuzzy cardinality

end for
return ε

end procedure

Note: The algorithm requires as input the I ×1 arrays of fuzzy observations x̃ j and x̃k
along with the fuzzy categories g̃ j and g̃k for the j, kth pair of variables and returns as

output the R ×C array of membership functions ξ̃n
jk = (ξ̃n11 , . . . , ξ̃nrc , . . . , ξ̃nRC )

associated to each fuzzy count ñ jk
rc .

fX (x; ρ jk) = 1

2π
√

1 − ρ2
jk

exp

(

−1

2

[

(x j )2 + (xk)2 − 2x j xkρ jk

1 − ρ2
jk

])

, (3.1)

for −∞ < x j < ∞ and −∞ < xk < ∞. Without loss of generality, consider the
collection of fuzzy observations

ỹ = {(ỹ j
1 , ỹk1 ), . . . , (ỹ

j
i , ỹki ), . . . , (ỹ

j
I , ỹ

k
I )},

which relates to the (latent) bivariate Gaussian model in Eq. (3.1) via the constraint

(ỹ j
i ∈ g̃ j

r ) ∧ (ỹki ∈ g̃kc ) iff (X j
i , X

k
i ) ∈ (τ X j

r−1, τ
X j

r ] × (τ Xk

c−1, τ
Xk

c ] ⊂ R
2, (3.2)
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where ∈ is intended as fuzzy membership, (g̃ j
r , g̃kc ) are observed fuzzy cate-

gories or granules, and the arrays τ X j = (τ
X j
0 , . . . , τ

X j
r , . . . , τ

X j
R ) and τ Xk =

(τ
Xk
0 , . . . , τ

Xk
c , . . . , τ

Xk
C ) are thresholds of the bivariate support R2 under the con-

ventions τ
X j
0 = τ

Xk
0 = −∞ and τ

X j
R = τ

Xk
C = ∞. Note that since fuzzy numbers

encompass crisp observations and crisp categories as special cases (i.e., degenerated
and rectangular fuzzy numbers, respectively), the expression (3.2) can be used for
the non-fuzzy case as well. For instance, the simplest situation involving non-fuzzy
observations and non-fuzzy categories can be obtained rewriting the left part of the
constraint as (ẙ j

i = r) ∧ (ẙki = c), which indicates that crisp observations take the
indices of the categories.

The parameter space for the LLCs model is

θ = {ρ jk, τ X j , τ Xk } ∈ [−1, 1] × R
R−1 × R

C−1,

whereas the log-likelihood function takes the following form in the case of independent
and identically distributed fuzzy observations [47, 59]:

lnL(θ;˜N) = K −
R

∑

r=1

C
∑

c=1

∑

n∈N0

n ξ
jk
ñrc

(n) ln π
jk
rc (θ)

= K −
R

∑

r=1

C
∑

c=1

∑

n∈N0

n ξ
jk
ñrc

(n) ln
∫ τ X j

r

τ X j
r−1

∫ τ Xk
c

τ Xk
c−1

fX (x; ρ jk) dx
jdxk, (3.3)

where fX (x; ρ jk) is themodel’s density inEq. (3.1), ξ jk
ñrc

(n) is the rcth fuzzy count, and
K is a constant term.Note that fX (x; ρ jk) is not fuzzy in this context and its realizations

represent unobserved (latent) quantities. The evaluation of (ỹ j
i ∈ g̃ j

r )∧(ỹki ∈ g̃kc ) gives

raise to a collection of fuzzy counts ñ jk
11, . . . , ñ

jk
rc , . . . , ñ

jk
RC acting as possibilistic

constraints on the unobserved non-fuzzy counts which would be observed if fuzziness
was missed. As such, the expression ξ

jk
ñrc

(nrc) ∈ [0, 1] should be interpreted as the

possibility that the crisp count nrc has to occur, with ξ
jk
ñrc

(nrc) = 1 indicating that
nrc is fully possible. According to the epistemic viewpoint on fuzzy statistics [37],
the sampling process is thought as being the consequence of a two-stage generation
mechanism, the first of which is a random experiment and the second is a non-random
fuzzification of the outcome being realized. As an example of this schema, consider the
simplest case of crisp observations (e.g., income and tobacco use) that are classified by
a group of raters or an automatic classification system on the basis of fuzzy categories
(e.g., income levels: low, medium, high; tobacco use: none, sporadic, habitual). Stated
in this way, the fuzzy frequencies associated with income and tobacco use encapsulate
two sources of uncertainty, namely the random component due to the sampling process
and the non-random component due to the post-sampling fuzzy classification.
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3.2 Parameter Estimation

To estimate θ , we adopt the Olsson’s two-stage approach for latent linear correlations
which iteratively alternates between approximating τ̂ from the observed count data and
maximizing Eq. (3.3) with respect to ρ̂ given the current thresholds [59]. In the case
of fuzzy data, this procedure can be implemented using a variant of the expectation–
maximization algorithm generalized to the case of fuzzy observations [24]. Likewise
for the standard EM algorithm, the fuzzy EM version alternates between the E-step,
which requires computing the expected complete log-likelihood given the candidate
θ ′ = θ (q−1), and the M-step, which maximizes the expected complete log-likelihood
w.r.t. θ (q). More precisely, in the fuzzy EM algorithm the complete data log-likelihood
is that obtained if the matrix of counts N jk

R×C was precisely observed, namely:

lnL(θ;N) = ln I ! −
R

∑

r=1

C
∑

c=1

n jk
rc ln π

jk
rc (θ) −

R
∑

r=1

C
∑

c=1

ln n jk
rc !. (3.4)

Given the estimates θ ′, the E-step for the (q)th iteration consists of computing the
Q-function via conditional expectation on the observed fuzzy counts:

Q(θ , θ ′) = Eθ ′
[

lnL(θ;N)

∣

∣

∣

˜N
]

∝
R

∑

r=1

C
∑

c=1

Eθ ′
[

N jk
rc

∣

∣

∣ñ
jk
rc

]

ln π
jk
rc (θ) − Eθ ′

[

ln N jk
rc !

∣

∣

∣ñ
jk
rc

]

. (3.5)

The conditional expectations involve the density of a discrete random variable Nrc

conditioned on a fuzzy event ñrc that, under the multinomial schema for random
counts, can reasonably be modeled as Binomial [1]. Thus, using the definition of
fuzzy probability, Nrc|ñrc is as follows:

p
N jk
rc |ñ jk

rc
(n;π

jk
rc (θ)) =

Pθ

(

N jk
rc , ñ jk

rc

)

Pθ

(

ñ jk
rc

) =
ξ
jk
ñ jk

(n)p
N jk
rc

(n;π
jk
rc (θ))

∑

n∈N0
n ξ

jk
ñ jk

(n)p
N jk
rc

(n;π
jk
rc (θ))

, (3.6)

π
jk
rc (θ), =

∫ τ X j
r

τ X j
r−1

∫ τ Xk
c

τ Xk
c−1

fX (x; ρ jk) dx
jdxk, (3.7)

where p
N jk
rc

= Bin(n;π
jk
rc (θ)) and fX (x; ρ jk) is the latent model’s density in Eq.

(3.1). Note that the quantity Iπ jk
rc (θ) is the reconstructed count from the bivariate

latent model given the current parameters θ ′ [66]. The linear form of the expectations
in Eq. (3.5) is

Eθ ′
[

N jk
rc

∣

∣

∣ñ
jk
rc

]

=
∑

n∈N0

n p
N jk
rc |ñ jk

rc
(n;π

jk
rc (θ ′)), (3.8)
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Table 1 Expectation–maximization algorithm for estimating θ = (τ X j , τ Xk , ρ jk ) in LLCs model with
fuzzy frequency data

Algorithm 2 Olsson’s two-stage approach via fuzzy EM algorithm

for j ∈ (1, . . . , J ) and k ∈ (1, . . . , J ), j �= k, do:

q = 1 : Set θ (q) = (ρ0jk , τ
0
X j , τ

0
Xk ), l

(q) = l0, ε = 1e−09 initialization

q > 1 : Compute π jk (θ (q−1)) from Eq. (3.7) E- Step

Compute ̂N jk given θ (q−1) from Eq. (3.8)

Compute ln̂N jk ! given θ (q−1) from Eq. (7.1)

Compute {̂τ (q)

X j , τ̂
(q)

Xk } from Eqs. (3.9) and (3.10) M- Step

Set θ (q) =
(

ρ
(q−1)
jk , τ

(q)

X j , τ
(q)

Xk

)

Solve ∂
∂ρ jk

Q(θ , θ (q)) = 0 w.r.t. ρ jk see Eq. (3.11)

Set θ (q) =
(

ρ
(q)
jk , τ

(q)

X j , τ
(q)

Xk

)

Evaluate l(q) = lnL(θ (q);̂N) see Eq. (3.4) Finalization

Compute lδ = (l(q) − l(q−1))

If lδ < ε, set ̂θ = θ (q) and stop the algorithm

R[ j, k] = ρ
(q)
jk

whereas, since it is not involved in the M-step of the algorithm, the nonlinear expec-
tation is provided in Appendix A for the sake of completeness.

Finally, the M-step for the (q)th iteration requires maximizing the functional
Q(θ, θ ′) with respect to θ . Given the filtered counts at the current iteration ̂N jk

R×C
(see Eq. 3.8), the Olsson’s two-stage estimation approach requires the estimation of
thresholds from the cumulative marginals of filtered counts first:

τ̂
(q)

X j = Φ−1
(

AR×R̂N jk1C
)

, (3.9)

τ̂
(q)

Xk = Φ−1
(

AC×C (̂N jk)T 1R
)

, (3.10)

where A is a lower triangular matrix of ones, 1 is a vector of appropriate order of
all 1/I , and Φ is the Gaussian univariate distribution function with mean zero and
unitary variance. Next, conditioned on {̂τ (q)

X j , τ̂
(q)

Xk }, the remaining parameter is found

by solving the score equation of Q(θ , θ (q)) numerically w.r.t. ρ jk :

Uρ jk =
∂Q

(

ρ jk, {̂τ (q)

X j , τ̂
(q)

Xk }
)

∂π jk

∂π jk

∂ρ jk
= 0. (3.11)

The algorithm proceeds iteratively until the log-likelihood does not increase signifi-
cantly. Table 1 summarizes the fuzzy EM algorithm for the LLCs model.
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3.3 Remarks

About the Convergence of the Algorithm Given a candidate θ ′, the fuzzy EM starts
by constructing the surrogate Q(θ , θ ′) that lower-bounds the observed data log-
likelihood lnL(θ;˜N) (E-step). Next, it is maximized to get the current estimates
θ (q) (M-step), which is in turn used to construct a new lower bound Q(θ, θ (q)) in
the next iteration to get a new estimate θ (q+1). The estimates in the M-step are chosen
so that Q(θ, θ (q)) ≥ Q(θ , θ ′), which forms the base of the monotonicity condition
lnL(θ (q+1);˜N) ≥ lnL(θ (q);˜N) [54]. As for the standard case, the monotonicity of
the sequence {lnL(θ (q)}q∈N implies the convergence to a stationary value, which can
be global or local depending on the characteristics of the log-likelihood function and
the starting point θ0. A sketch of the proof of the monotonicity of the fuzzy EM for
the LLCs is provided in Appendix B, whereas the formal equivalence between EM
and fuzzy EM is detailed in [24, 62].

About the Starting Values of the Algorithm Suitable starting values θ0 can be obtained
by first defuzzifying the observed fuzzy frequencies matrix ˜N jk to obtain non-fuzzy
counts and then applying the standard Olsson’s two-stage approach [59] on defuzzi-
fied data. In general, this yields convenient starting values. In the LLCs model,
defuzzification can be performed via mean or max-based procedures as follows:
n̂mean
rc

∼= ∑

n∈N0
nξñrc (n)/

(∑

n∈N0
ξñrc (n)

)

, n̂max
rc = max{n ∈ N0 : ξñrc (n) =

maxz∈N0 ξñrc (z)}, r = 1, . . . , R, c = 1, . . . ,C .

About the Term pNrc|ñrc(n;πrc(θ)). The term pNrc|ñrc represents the density of a
non-fuzzy random variable conditioned on fuzzy numbers and can mathematically be
interpreted as the combination of two independent components, namely the random
mechanism underlying the sampling process and the observer’s partial knowledge
(imprecision) about the sample realizations. In this sense, as it weights each fuzzy
datum by the probability that it has to occur [52], pNrc|ñrc should not be confused with
themean-baseddefuzzificationof fuzzynumbers.Anice property of this formulation is
that fuzziness vanisheswhenprecise observations are available. Indeed, the conditional
density involving a degenerated fuzzy number n̊rc boils down to a degenerated discrete
density pNrc|n̊rc with nonzero probability masses only for those n such that ξñrc(n) =
1. As a consequence, the fuzzy EM procedure reduces to standard Olsson’s two-
stage maximum likelihood estimation. In general, there are a number of ways for
plugging-in non-stochastic components of uncertainty into pNrc|ñrc , such as those
involving imprecise probability [7], conditional probability [18], belief measures [76],
and random fuzzy variables [30].

About the Computation of Standard Errors and InferenceStandard errors for ρ̂ jk might
be computed by following the general results of the EM algorithm [54]. In particu-
lar, there are a number of procedures which have been suggested to this purpose.
A common way is that of calculating the square root of the inverse of the empir-
ical information matrix [40], which approximates the expected information matrix
by using the observed score statistic. Similarly, another strategy has been suggested
by Louis [53] and requires the computation of the expected complete and missing
information matrices. Alternatively, standard errors can also be obtained by means of
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nonparametric or parametric bootstrap techniques, which have been demonstrated to
be robust under several circumstances [55]. In the context of this article, we resorted
to use the nonparametric bootstrap technique to compute standard errors for the fuzzy
polychoric estimator (see [55], section 4.6). A particular advantage of this procedure
is that (1 − α) confidence intervals (CIs) can also be obtained as a by-product of the
bootstrap technique, for instance the bias-corrected and accelerated (BCa) CIs. More
precisely, Q bootstrap samples of the fuzzy matrix {˜N( jk)}q=1,...,Q can be obtained
by drawing from the α-cuts of the rcth element of ˜N( jk) (for each r = 1, . . . , R
and c = 1, . . . ,C) and then fuzzifying back the bootstrapped sample of count data
[33]. Finally, the sequence of estimates {ρ̂ jk}q=1,...,Q is used to compute the bootstrap

covariance matrix Cov [R] jk
∼= 1

Q−1

∑Q
q=1(ρ̂

(q)
jk − 1

B

∑Q
q=1 ρ̂ jk)

2, which is in turn

used for the computation of the standard errors σ̂ρ jk = √

Cov [R] jk , and the (1 − α)

BCa confidence intervals [25].

About the Polychoric Correlation Matrix RJ×J As for the standard approach used
in computing polychoric correlation matrices (e.g., see [41, 59]), also in the case of
fuzzy data, the matrix of latent linear correlations is obtained by calculating each
element ρ jk of the correlation matrix pairwise. Although this approach offers a simple
and effective alternative to more challenging methods (e.g., see [48, 68]), in some
circumstances, it may lead to non-positive definite correlation matrices. This can be
problematic, especiallywhen suchmatrices are used as input of other statisticalmodels
such as factor analyses or SEMs [51]. In these cases, eigenvalue decomposition-based
smoothing [44], least squares [44] or Dykstra’s [35] corrections constitute workable
solutions to solve this issue.

4 Simulation Study

The aimof this simulation study is twofold. First, wewish to evaluate the performances
of fuzzy EM algorithm in estimating parameters of the LLCs model and, second, to
investigate whether the standard Olsson’s maximum likelihood procedure performs
as good as the proposed method if applied on max-based and mean-based defuzzified
data. The case J = 2 has been considered for the sake of simplicity. The Monte Carlo
study has been performed on a (remote) HPC machine based on 16 CPU Intel Xeon
CPU E5-2630L v3 1.80 GHz, 16x4 GB RAM, whereas computations and analyses
have been done in the R framework for statistical analyses.

Design The design of the study involved three factors, namely (i) I ∈ {150, 250, 500,
1000}, (ii) ρ0 ∈ {0.15, 0.50, 0.85}, (iii) R = C ∈ {4, 6}, which were varied
in a complete factorial design with 4 × 3 × 2 = 24 possible combinations. The
threshold parameters were held fixed under the equidistance hypothesis [41], namely
τ 0
X j = τ 0

Xk = (−2.00,−0.66, 0.66, 2.00) for the conditions with R = C = 4 and

τ 0
X j = τ 0

Xk = (−2.00,−1.20,−0.40, 0.40, 1.20, 2.00) for R = C = 6. For each
combination, B = 5000 samples were generated yielding to 5000 × 24 = 120000
new data and an equivalent number of parameters.
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Data Generation and Procedure Let Ia , ρ0
b , Rd = Cd be distinct levels of the factors

I , ρ0, R, and C . Then, fuzzy frequency data have been generated according to the
following procedure. For each r = 1, . . . , Rd and c = 1, . . . ,Cd :

(i) Set nrc = Iaπrc (see Eq. (3.7)) given τ 0
X j , τ

0
Xk , ρ

0
b , and Ia ;

(ii) the imprecision concerning nrc was generated as follows: m1 ∼ Gammad(αm1 ,

βm1) where αm1 = 1 + nrcβm1 , βm1 = (nrc + n2rc + 4s21 )
1
2
/

2s21 , s1 ∼
Gammad(αs1 , βs1), αs1 = 1 + m0βs1 , βs1 = (m0 + m2

0 + 4s20 )
1
2
/

2s20 , m0 = 1
and s0 = 0.25, with Gammad indicating the discrete Gamma random variable
with shape and rate being reparameterized in terms of mean m and variance s;

(iii) the fuzzy set associated with ñrc was obtained via the following probability–
possibility transformation: ξ ñrc = fGd(n;αrc, βrc)

/

max fGd(n;αrc, βrc), with

n = {0, 1, . . . , Ia}, αrc = 1 + m1βs1 , βs1 = 1 + (m1 + m2
1 + 4s21 )

1
2 /2s21 ,

βrc = (m1 + m2
1 + 4s21 )

1
2
/

2s21 , and fGd(n;αrc, βrc) being the discrete Gamma
density normalized to one in order to mimic the behavior of a normal fuzzy set
[27]. The discrete density fGd is computed as a difference of survival functions
of the continuous Gamma density SG(x) − SG(x + 1) [15, 74].

Note that step (ii) is required in order tomake crisp counts entirely imprecise so that ñrc
is no longer centered on nrc. Finally, parameters θ = {ρ, τ X j , τ Xk } were estimated
from the fuzzy counts ˜NRd×Cd using the fuzzy EM algorithm (fEM) and the standard
Olsson’s two-stage maximum likelihood on max-based (dML-max) and mean-based
(dML-mean) defuzzified counts (see Sect. 3.3).

OutcomeMeasuresFor each condition of the simulation design, the threemethods (i.e.,
fEM,ML-max,ML-mean)were evaluated in terms of bias and rootmean square errors.
In addition, for each method thresholds were aggregated to form a scalar statistic,
namely τ̂ = 1TRd

τ̂ X j and τ̂ = 1TCd
τ̂ Xk . (Note that τ X j and τ Xk are equal by design.)

For the sake of completeness, bootstrap standard errors and 95% BCa confidence
intervals were computed for the three methods along with coverage probability and
interval lengths.

Results Tables 2, 3, 4, and 5 report the results of the simulation study with regards to
ρ̂ and τ̂ for both R = C = 4 and R = C = 6 cases. We begin with the correlation
parameter ρ for the case R = C = 4 (see Table 2). Considering ρ0 = 0.15, the meth-
ods showed negligible bias in estimating ρ. However, they differed in terms of RMSE,
with fEM showing lower values with increasing sample size if compared to dML-max
and dML-mean. With increasing correlation length (ρ0 > 0.15), bias of estimates as
well as RMSE was more pronounced for dML-max and dML-mean. The same results
were also observed for the case with R = C = 6 (see Table 3). With regards to the
overall statistic τ̂ for the threshold parameters, all the methods achieved comparable
results regardless of ρ0. In particular, fEM showed slightly higher bias and RMSE
and then dML-max and dML-mean methods across R = C = 4 (see Table 4) and
R = C = 6 (see Table 5) conditions. To further investigate these results, we studied
average bias and variance of estimates for τ̂ X j (or τ̂ Xk ) as a function of sample size
I and ρ0. We found that the leftmost and rightmost thresholds tended to be slightly
larger for fEM as opposed to the innermost thresholds for both R = C = 4 (see
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Table 2 Simulation study: average bias and root-mean-square errors for ρ in the condition R = C = 4

R = C = 4 fEM dML-max dML-mean

bias rmse bias rmse bias rmse

ρ = 0.15

I = 150 0.03401 0.08911 −0.01653 0.11826 −0.04354 0.08824

I = 250 0.00455 0.05062 −0.02821 0.08106 −0.04020 0.06766

I = 500 0.01047 0.02974 0.00311 0.04180 −0.00743 0.03339

I = 1000 − 0.00321 0.01515 −0.01012 0.02441 −0.01421 0.02276

ρ = 0.50

I = 150 0.01265 0.07236 −0.08807 0.15014 −0.17694 0.19253

I = 250 − 0.03699 0.06349 −0.12376 0.15052 −0.17174 0.18119

I = 500 − 0.00151 0.02688 −0.04673 0.06983 −0.08356 0.09120

I = 1000 − 0.00050 0.01389 −0.02226 0.03582 −0.03921 0.04459

ρ = 0.85

I = 150 0.00194 0.04504 −0.21865 0.25598 −0.32889 0.33729

I = 250 − 0.00285 0.02903 −0.17042 0.19816 −0.25843 0.26540

I = 500 − 0.00104 0.01586 −0.10519 0.12382 −0.16418 0.16884

I = 1000 − 0.00056 0.00810 −0.06598 0.07880 −0.10451 0.10760

Note that fEM is the fuzzy EM algorithm, whereas dML-max and dML-mean denote the standardmaximum
likelihood based on max-based and mean-based defuzzified counts

Table 3 Simulation study: average bias and root-mean-square errors for ρ in the condition R = C = 6

R = C = 6 fEM dML-max dML-mean

bias rmse bias rmse bias rmse

ρ = 0.15

I = 150 0.02884 0.10022 −0.01490 0.10067 −0.04919 0.08355

I = 250 0.00860 0.05720 −0.02461 0.07169 −0.04289 0.06501

I = 500 − 0.01619 0.03395 −0.02606 0.04555 −0.03853 0.04869

I = 1000 0.00064 0.01474 −0.00539 0.01947 −0.01021 0.01892

ρ = 0.50

I = 150 − 0.05241 0.10238 −0.17183 0.20107 −0.25228 0.26146

I = 250 − 0.00259 0.04950 −0.09811 0.12241 −0.16604 0.17374

I = 500 − 0.00644 0.02414 −0.05111 0.06359 −0.08845 0.09304

I = 1000 − 0.00214 0.01222 −0.02415 0.03205 −0.04278 0.04594

ρ = 0.85

I = 150 − 0.00245 0.05111 −0.24268 0.26670 −0.38252 0.38855

I = 250 − 0.01614 0.03414 −0.18437 0.19946 −0.28388 0.28831

I = 500 0.00078 0.01412 −0.09831 0.10892 −0.16062 0.16358

I = 1000 − 0.00219 0.00694 −0.05869 0.06422 −0.09167 0.09336

Note that fEM is the fuzzy EM algorithm, whereas dML-max and dML-mean denote the standardmaximum
likelihood based on max-based and mean-based defuzzified counts
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Table 4 Simulation study: average bias and root-mean-square errors for the aggregated thresholds τ̂ =
1TRd τ̂ X j in the condition R = C = 4

R = C = 4 fEM dML-max dML-mean

bias rmse bias rmse bias rmse

ρ = 0.15

I = 150 0.11082 0.30335 0.03419 0.16958 0.11037 0.14607

I = 250 0.07881 0.12035 0.01038 0.10643 0.03761 0.08513

I = 500 0.02189 0.04664 0.01363 0.05270 0.01595 0.04706

I = 1000 0.02916 0.03685 0.01158 0.02967 0.01314 0.02781

ρ = 0.50

I = 150 0.00597 0.12056 0.09273 0.16206 0.14804 0.17656

I = 250 0.04446 0.09646 0.02888 0.10059 0.05722 0.09249

I = 500 0.04445 0.06225 0.00718 0.05440 0.00284 0.04488

I = 1000 0.01771 0.02797 0.00017 0.02606 0.00288 0.02370

ρ = 0.85

I = 150 0.06325 0.32381 0.08313 0.16289 0.13419 0.16534

I = 250 0.03843 0.09054 0.03940 0.10066 0.06298 0.09680

I = 500 0.01918 0.04347 0.02264 0.05314 0.02680 0.04995

I = 1000 0.03036 0.03668 0.00637 0.02696 0.00632 0.02414

Note that fEM is the fuzzy EM algorithm, whereas dML-max and dML-mean denote the standardmaximum
likelihood based on max-based and mean-based defuzzified counts

Supplementary Materials, Figure S1) and R = C = 6 conditions (see Supplemen-
tary Materials, Figure S2). Moreover, the variance of estimates for the leftmost and
rightmost thresholds was higher if compared to the innermost thresholds (see Supple-
mentary Materials, Table S2) but, as expected, it reduced with increasing sample size
regardless of ρ0. This is not surprising given that we implemented a standard LLCs
model in which no particular constraints were applied on threshold estimates, such as
1TRd

τ̂ X j = 0 (e.g., see [28]).1 Most importantly, according to the Gaussianity assump-
tion underlying the LLCsmodel, estimated thresholds were symmetric and equidistant
with respect to the fixed point zero (see Supplementary Materials, Table S1). Overall,
the results suggest that fEM should be preferred over defuzzified maximum likelihood
when the interest is in estimating the latent linear association ρ among pairs of vari-
ables and fuzzy frequency statistics are available. On the contrary, for those particular
cases where ρ is known and the interest is in estimating the true threshold parameters,
standard Olsson’s maximum likelihood method can directly be applied after defuzzi-
fiyng observed fuzzy frequency counts. With regards to the estimation of the standard
errors, the three algorithms showed comparable results. As expected, the statistic σ̂ρ jk

decreased as a function of the sample size I for both R = C = 4 and R = C = 6 con-
ditions (see SupplementaryMaterials, Tables S3 and S4). Instead, with regards to 95%

1 It should be remarked that the unconstrained approach is most common in LLCs-based applications,
especially when the primary interest lies in making inference about ρ. In this case, the threshold parameters
play an auxiliary role as they only affect the scale of the latent variables underlying the LLCs model (e.g.,
see [49]).
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Table 5 Simulation study: average bias and root-mean-square errors for the aggregated thresholds τ̂ =
1TRd τ̂ X j in the condition R = C = 6

R = C = 6 fEM dML-max dML-mean

bias rmse bias rmse bias rmse

ρ = 0.15

I = 150 0.07773 0.32426 0.06858 0.15506 0.14761 0.17434

I = 250 0.04557 0.10842 0.02624 0.09560 0.06524 0.09514

I = 500 0.04214 0.06111 0.00563 0.05203 0.00926 0.04363

I = 1000 0.01893 0.02878 0.00156 0.02522 0.00456 0.02381

ρ = 0.50

I = 150 0.13719 0.43117 0.06764 0.15797 0.14535 0.17206

I = 250 0.06769 0.13028 0.02734 0.09601 0.06286 0.09325

I = 500 0.01777 0.04274 0.01712 0.04958 0.02562 0.04733

I = 1000 0.02963 0.03633 0.00881 0.02693 0.00994 0.02522

ρ = 0.85

I = 150 0.02021 0.17906 0.10739 0.15707 0.16366 0.18348

I = 250 0.01492 0.06809 0.06039 0.10015 0.09371 0.11295

I = 500 0.02625 0.04338 0.01779 0.04829 0.03246 0.04939

I = 1000 0.02293 0.02893 0.00222 0.02407 0.00696 0.02142

Note that fEM is the fuzzy EM algorithm, whereas dML-max and dML-mean denote the standardmaximum
likelihood based on max-based and mean-based defuzzified counts

CIs, only the fEM method showed consistent results in terms of coverage probability
and interval lengths over all the simulation conditions (see Supplementary Materials,
Table S3 and S4). In particular, with the exception of the condition ρ0 = 0.15, the
dML-max and dML-mean algorithms did not reach the nominal coverage probability.
By contrast, the empirical coverage probability for the fEM algorithm was close to (or
higher then) the nominal value, with interval lengths decreasing as a function of the
sample size I .

5 Applications

In this section, we describe the application of the proposed method to two case studies
from health and natural sciences, involving the assessment of a psychotherapeutic
intervention (application 1) and the evaluation of meteorological characteristics for
forty Turkish cities (application 2). Note that both the applications are provided to
merely illustrate the use of fuzzy LLCs model when dealing with imprecise data.

5.1 Application 1: Assessing the Outcome of a Therapy

Evaluating the quality of a psychotherapy session plays a central role in evidence-
based medicine. A typical approach to understand the fundamentals of the therapeutic
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Table 6 Application 1: Fuzzy categories for the three variables of the assessment task

X1 X2 X3

xl c1 c2 xu xl c1 c2 xu xl c1 c2 xu

r = 1 0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00

r = 2 0.50 1.50 2.50 5.00 0.50 1.50 2.50 5.00 0.50 1.50 2.50 5.00

r = 3 2.00 3.50 4.50 7.00 2.00 3.50 4.50 7.00 2.00 3.50 4.50 7.00

r = 4 4.00 6.50 7.50 9.50 4.00 5.50 6.50 9.50 4.00 6.50 7.50 9.50

r = 5 8.00 8.50 9.00 9.50 8.00 8.50 9.00 9.50 8.00 8.50 9.00 9.50

Note that each category is represented by means of trapezoidal fuzzy numbers (see Eq. 2.1)

Table 7 Application 1: Latent
linear correlation matrix
estimated via Olsson’s two-stage
fuzzy EM algorithm (the
bootstrap standard errors are
reported in parentheses)

X1 X2 X3

X1 1.00000

X2 0.06948 (0.11044) 1.00000

X3 0.00004 (0.09693) 0.21762 (0.10389) 1.00000

process consists in asking experts to assess the global quality and characteristics of
the therapist–patient relationship through specialized instruments such as the PQS
questionnaire [61]. The data thus collected generally consist either of ratings or of
classification of attributes made through bounded and graded scales. Because of their
characteristics, these tasks often involve imprecision and vagueness that can ade-
quately be accounted for by the fuzzy statistical modeling. In this application, we
consider the assessment of a psychotherapy session by means of the PQS question-
naire. Data were originally collected by [17] and refer to I = 60 evaluations of
psychotherapy on a 9-point scale over J = 3 dimensions of assessment. Given the
nature of the task, the three variables were originally considered to be fuzzy, each with
three trapezoidal fuzzy categories. To account for the extremes of the classification
scale, twomore outer categories were added so that R = C = 5 (see Table 6). Figure 2
shows the granulation based on five fuzzy categories (G0,. . .,G4) for each dimension
of assessment along with the corresponding crisp observations. The aim is to compute
the correlation matrix for the three fuzzy variables, with the hypothesis that the higher
degree of association is related to a good therapeutic outcome. The first step requires
computing the fuzzy frequency matrix ˜N5×5 for each pair of J = 3 fuzzy variables
given the crisp observed data. Next, the matrix of fuzzy counts is used to estimate the
latent linear correlation matrix ̂R5×5. Figure 3 shows a graphical representation of the
matrix of fuzzy counts ˜N5×5 for one pair of variables (i.e., X2,X3). It contains fuzzy
numbers with various degrees of fuzziness and includes combinations with degener-
ated fuzzy counts as well (i.e.,G(2)

0 ,G(3)
4 andG(2)

0 ,G(3)
0 ). Table 7 reports the estimates

of LLC coefficients. Overall, the results showed a low level of association among the
three dimensions,which in turn indicated that the psychotherapy being assessed cannot
be classified as having a good outcome.
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Fig. 2 Application 1: Granulation for the three fuzzy variables along with crisp observations (dashed gray
lines)

Fig. 3 Application 1: Fuzzy frequency matrix for the pair X2,X3. Note that each cell contains a fuzzy
natural number ñrc for a specific combination of the R × C granulation space

5.2 Application 2: Effect of Climatic Variables on Rainfall

Meteorological variables are generally used to assess the impact of climatic character-
istics in many phenomena including human as well as non-human activities. Although
often regarded as discrete or continuous measurements, these variables can benefit
from fuzzy coding in some circumstances. Examples include cases in which these
variables are imprecisely coded (e.g., when data are available in terms of intervals or
linguistic categories) or when they are derived from a variety of sources (e.g., sam-

123



Estimating Latent Linear Correlations from Fuzzy Frequency Tables

Fig. 4 Application 2: Fuzzy frequency matrix for the pair PRE, HUM. Note that each cell contains a fuzzy
natural number ñrc for a specific combination of the R × C granulation space

ples, historical databases, experts) that need to be integrated before being used for
data analysis [8, 16]. In this application, we consider the analysis of J = 5 meteoro-
logical variables (i.e., SUN: daily hours of sunshine; HUM: percentage of humidity;
PRE: precipitations; ALT: altitude; MAX: maximum daily temperature) which were
collected in 40 cities of Turkey during 2004 [2]. Data were originally coded using
R = C = 3 fuzzy triangular categories (G0: minimum; G1: medium; G2: maximum)
and membership grades ε

( j)
1 , ε

( j)
2 , ε

( j)
3 j = 1, . . . , 5 constitute the input data for the

subsequent analysis. The aim is to explore the effects of climatic variables on rainfall
(PRE) by means of a path analysis model. Likewise for the first application, the first
step consisted in computing the fuzzy frequency matrix ̂N3×3 for each pair of the five
climatic variables given the observed membership degrees. Then, the LLCs matrix
was estimated using the fuzzy EM algorithm. Figure 4 shows an example of fuzzy
counts for the pair of variables PRE-HUM, whereas Table 8 reports the estimated
correlations for the variables involved in the study. As expected, the results showed a
certain level of association among the five climatic variables.

Once the LLCsmatrix has been estimated, we proceeded bymodeling the effects of
the climatic variables on PRE via path analysis (see Fig. 5). In particular, we expected
that a higher humidity (HUM) increased rainfall (PRE) and that sunshine duration
(SUN) decreased the levels of precipitation (PRE). Similarly, we also expected an
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Fig. 5 Application 2: Path
model for the effect of the
climatic variables on the
response variable PRE. Note that
straight lines represent direct
effects, whereas dotted lines
indicate correlations

Table 9 Application 2:
Estimated coefficients β̂ and
residual variances σ̂ 2

ε for the
path model depicted in Fig. 5
along with the standard errors
σ̂ 2

β of the estimates

Path β̂ σ̂ 2
β σ̂ 2

ε

HUM-PRE 0.1844 0.1386 0.7488

SUN-PRE −0.3406 0.1386 0.9295

MAX-HUM −0.2161 0.1544 0.6717

ALT-MAX −0.5577 0.1312 0.975

indirect effect of altitude (ALT) on humidity (HUM) through temperatures (TEMP).
The path model has been estimated on the LLCs matrix via maximum likelihood as
implemented in the R library lavaan [64]. Overall, the estimated model showed a
moderate fit (R2 = 0.20). The results (Table 9) highlighted that PRE increased as a
function of HUM (β̂ = 0.1844, σ̂ 2

β = 0.1386) and decreased as sunshine duration

increased (β̂ = −0.3406, σ̂ 2
β = 0.1386). Humidity was negatively related to temper-

ature (β̂ = −0.2161, σ̂ 2
β = 0.1544), which was in turn negatively associated with

altitude (β̂ = −0.5577, σ̂ 2
β = 0.1312) as expected .

6 Conclusions

In this article, we described a novel approach to estimate latent linear correlations
(LLCs) when data are in the form of fuzzy frequency tables. In particular, we rep-
resented fuzzy counts in terms of generalized natural numbers first, and then we
generalized the sample space of the standard LLCs model to cope with fuzzy counts
while retaining its parameter space as non-fuzzy. The resulting model encapsulated
both random and non-random/imprecision components in a unified statistical repre-
sentation. Since the inferential interest is on estimating the latent correlation matrix
of the observed variables, parameter estimation was performed via fuzzy maximum
likelihood using the expectation–maximization algorithm. A simulation study and two
real applications were developed to highlight the characteristics of the fuzzy LLCs
model. Overall, the simulation results revealed that the fuzzy LLCs model showed
more accurate results in estimating the true correlation matrix as opposed to standard
methods which can be applied on defuzzified data. The applications showed how the
proposed method can be of particular value in situations involving fuzzy classification
and fuzzy coding as well.
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A particular advantage of the fuzzy LLCs model is its simplicity and ability
to deal with situations involving imprecise classification problems. Moreover, the
proposedmethod works with both fuzzy observations/crisp categories and crisp obser-
vations/fuzzy categories and, as such, it includes the standard crisp observations/crisp
categories as a special case. Again, the fuzzy LLCs model does not require the
extension of its parametric representation to account for fuzzy frequency data and
consequently, parameter estimation and inference can be performed using the asymp-
totic properties of maximum likelihood theory. This is quite convenient and obviates
the need of generalizing LLCs-based statistical modeling—such as structural equation
models and factor analysis—to the fuzzy case. A limitation of the proposed approach
is that it is based on the simplest, but still used, assumption of Gaussianity for LLCs.
Although it has been proved that the assumption holds in several empirical contexts,
there may be the need of LLCs based on more general probabilistic models (e.g.,
skew-Gaussian, elliptical, t , copula-based). As a result, the problems already identi-
fied by other researchers, for instance, bias in estimating the asymptotic covariance
matrix of the LLCs matrix [28, 56], still persist in the fuzzy case. The fuzzy bootstrap
technique used to approximate the covariance matrix of the fuzzy polychoric matrix
might constitute an additional limitation of the current study. Indeed, although it pro-
vides a computational solution to calculate standard errors and CIs, it might suffer
from the course of dimensionality (e.g., in the case of a higher number of variables
or response categories) as well as from a larger variance in the estimates. This is a
well-known issue in the fuzzy statistics literature (e.g., see [33]), and it is particularly
due to the fact that fuzzy bootstrap techniques handle with two sources of variability
simultaneously, i.e., one related to the randomness of the estimator and the second
related to the effect of the fuzziness in the data.

There are a number of further extensions to this project that can be undertaken in
future research studies. For instance, the use ofmore general probabilisticmodelwould
extend the proposed method to handle with situations involving violations of Gaus-
sianity assumption. In this line, further investigations should be undertaken to study
the problem of deriving asymptotically efficient estimators for covariance matrix and
standard error, for instance, by obtaining a fuzzy generalization of the Louis’ method
[53]. Similarly to the non-fuzzy case, this is still an open question. At the same time,
building interval estimators for the polychoric fuzzy estimator—beyond the point-wise
solution described in this article—might constitute a further generalization of the find-
ings of the present study. Another aspect which might be interesting to investigate is
the case where data need to be represented using more general fuzzy numbers (e.g.,
beta, exponential, Gaussian), which would allow the proposed method to cope with
cases requiring more flexible models to represent non-random imprecision. Further,
studying the properties of fuzzy LLCs-based statistical models like structural equation
modeling or factor analysis would also constitute a research topic to be considered
in a further study. Finally, neutrosophic-based generalizations of the proposed LLC
statistic might also be a further research line to be investigated (e.g., see [6, 65]).

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s40304-022-00295-6.
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Appendix A

To compute the nonlinear expectation E
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, we first approximate the factorial
term via Stirling’s formula:
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∣ñ
jk
rc

]

= Eθ ′
[

g
(

N jk
rc

) ∣

∣

∣ñ
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with g(x) := x ln x . Next, since the nonlinear transformation g(.) is smooth and
twice-differentiable on (0,∞) with g′′(x) = 1/x , a second-order Taylor expansion
around the first conditional moment E
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N
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can be developed to get the closed-form
expression of the expectation term:
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with the conditional variance being defined by
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where E
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]

is as in Eq. (3.8).
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Appendix B

To establish monotonicity for a sequence of log-likelihood evaluations {lnL(θ (q);
Ñ)}q∈N of the fuzzy expectation–maximization algorithm, we will follow the general
results of [54], Sect. 3.2. A similar proof is also given by [80] for the case of rectangular
fuzzy numbers (i.e., interval-valued data). In what follows, we will omit the indices
j, k for the sake of simplicity. Given θ ′ = θ (q−1) and by rearranging Eq. (3.6), we get
by standard calculus:

lnL(θ;˜N)

= lnL(θ;N) −
R

∑

r=1

C
∑

c=1

ln pNrc|ñrc(n;πrc(θ))
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[
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∣ñrc

]

= Q(θ; θ ′) − S(θ; θ ′). (7.2)

Then, an increasing of the observed log-likelihood can be written in terms of the result
(7.2) as follows:

lnL(θ (q);˜N) − lnL(θ ′;˜N)

≥
(

Q(θ (q); θ ′)) − Q(θ ′; θ ′)
)

−
(

S(θ (q); θ ′) − S(θ ′; θ ′)
)

.

Note that because θ (q) is chosen so thatQ(θ (q); θ ′))−Q(θ ′; θ ′) ≥ 0 [54], the condition
S(θ; θ ′) − S(θ ′; θ ′) ≤ 0 must hold for each θ . To do so, we proceed as follows:
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using Jensen’s inequality
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pNrc|ñrc(n;πrc(θ))
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≤
R

∑

r=1

C
∑

c=1

ln 1 = 0
��

Hence, an increasing of lnL(θ (q);˜N) − lnL(θ ′;˜N) ≥ 0 is guaranteed as soon as
Q(θ (q); θ ′)) − Q(θ ′; θ ′) ≥ 0.
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