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Abstract: In several research areas, ratings data and response times have been successfully used to
unfold the stagewise process through which human raters provide their responses to questionnaires
and social surveys. A limitation of the standard approach to analyze this type of data is that it requires
the use of independent statistical models. Although this provides an effective way to simplify the data
analysis, it could potentially involve difficulties with regard to statistical inference and interpretation.
In this sense, a joint analysis could be more effective. In this research article, we describe a way
to jointly analyze ratings and response times by means of fuzzy numbers. A probabilistic tree
model framework has been adopted to fuzzify ratings data and four-parameters triangular fuzzy
numbers have been used in order to integrate crisp responses and times. Finally, a real case study
on psychometric data is discussed in order to illustrate the proposed methodology. Overall, we
provide initial findings to the problem of using fuzzy numbers as abstract models for representing
ratings data with additional information (i.e., response times). The results indicate that using fuzzy
numbers leads to theoretically sound and more parsimonious data analysis methods, which limit
some statistical issues that may occur with standard data analysis procedures.

Keywords: fuzzy rating data; fuzzy statistics; fuzzy linear regression

MSC: 62-07; 62J12; 62P25

1. Introduction

Rating scales and questionnaires are widespread in behavioral and social sciences
and are especially useful in collecting human opinions, attitudes, and socio-demographic
information. A typical rating task entails a multicomponential sequence of cognitive tasks
which drive raters to provide their response by selecting one of the possible response
categories [1]. It is well-accepted that mining the raters’ response process can provide new
insights into the mechanisms underlying rating choices [2,3]. To this end, fuzzy set theory
has been widely applied in modeling the non-random and subjective components of the
rating response (for a recent review, see [4]). By and large, two general approaches can be
recognized in the fuzzy rating literature, namely fuzzy direct scales and fuzzy conversion
scales. While the former asks raters to provide their response by means of a stage-wise
methodology, which is in turn supposed to elicit the subjective components of the rating
response (e.g., see [5–7]), the latter aims at turning standard rating data into fuzzy numbers
by means of expert-based or statistical-based procedures (e.g., see [8–10]). Despite the
differences on the way of mapping fuzzy numbers to the rating process, both provide a
valuable strategy to avoid the loss of subjective information entailed by standard rating
response formats [11,12].

Recently, a novel fuzzy conversion procedure (fIRTree) has been proposed with the
aim of quantifying a particular component of the rating process, namely the rater’s decision
uncertainty [13,14]. The fIRTree procedure is based upon the use of the Item Response
Theory-based trees (IRTree), which model the stage-wise rating processes in terms of linear
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or nested statistical trees [15]. In particular, once an IRTree model has been fit to crisp
rating data, fIRTree uses the estimated IRT parameters to map parametric fuzzy numbers
to crisp ratings data. In addition, when the four-parameter triangular fuzzy numbers are
used [16], fIRTree allows for integrating rating responses and response times into a unique
parametric representation. In doing so, fIRTree provides a more flexible and parsimonious
representation of uncertainty in ratings data.

In this paper, we describe how parametric fuzzy numbers can be easily used to inte-
grate multiple sources of rating information, such as rating responses and response times.
The aim is twofold. First, we show how the four-parameter triangular fuzzy numbers [16]
can be used to jointly model fIRTree-based raters’ responses and time in a unique formal
representation [13]. The importance of response times in quantifying characteristics of the
rating process (e.g., item/question’s difficulty) has been widely established in the psycho-
metric literature [17]. Second, we describe a way to analyze and make inference on this
type of data by means of an integrated fuzzy statistical framework. To this end, we adopt
an epistemic-based fuzzy normal linear model with crisp predictors, where the problem
of point estimation for the unknown parameters is addressed using the minimum inaccu-
racy principle [18]. Fuzzy regression models are widespread methods to analyze fuzzy
data [19–21]. According to the epistemic interpretation of a fuzzy set [22], fuzzy data are
affected by two types of imprecision: stochastic imprecision–which is related to the proba-
bilistic model underlying the observations—and possibilistic imprecision—which is in turn
associated with an incomplete knowledge of the originally crisp observations [23,24]. Fi-
nally, a real case study based on psychometric data is used in order to highlight the features
of the proposed approach with regards to more traditional data analysis procedures.

The remainder of this paper is structured as follows. Section 2 presents an overview
of fuzzy numbers, fIRTree models, and the fuzzy normal linear model with crisp predictors.
Section 3 illustrates an application of the new methodology on clinical questionnaire data
along with a comparison with standard data analyses. Finally, Section 4 provides final
remarks on the current findings.

2. Methodology
2.1. Fuzzy Numbers

A fuzzy subset Ã of a universal set A is defined by its membership function
ξ Ã : A → [0, 1]. It can be described as a collection of crisp subsets called α-sets, i.e.,
Ãα = {y ∈ A : ξ Ã(y) > α} with α ∈ (0, 1]. If the α-sets of Ã are all convex sets, then Ã is
a convex fuzzy set. The support of Ã is A0 = {y ∈ A : ξ Ã(y) > 0} and the core is the
set of all its maximal points Ac = {y ∈ A : ξ Ã(y) = maxy∈A ξ Ã(y)}. In the case where
maxy∈A ξ Ã(y) = 1, then Ã is a normal fuzzy set. If Ã is a normal and convex subset of
R, then Ã is a fuzzy number. The class of all normal fuzzy numbers is denoted by F (R).
Fuzzy numbers can be represented using parametric models that are indexed by some
scalars, such as c (mode) and s (spread or precision). A particular type of parametric fuzzy
number is the so-called four-parameters triangular fuzzy number [16]:

ξ Ã(y; c, l, r, ω) =

(
1 +

(
c− y
y− l

)ω)−1

· 1[l,c](y) +
(

1 +
(

r− y
y− c

)−ω)−1

· 1(c,r](y) (1)

where −∞ < l < c < r < +∞ and ω ∈ R+
0 . The fuzziness of the set is controlled by the

parameter ω, which provides an intensification (ω < 1) or a reduction (ω > 1) of its shape.
The versatility of such a fuzzy number offers a way to integrate different sources of uncer-
tainty into a unique formal representation. Note that the parameter ω allows for increasing
or decreasing the overall fuzziness of the set [25]. Moreover, four-parameter fuzzy numbers
require just one intensification parameter (e.g., differently from [26]), providing a balance
between flexibility and complexity. According to the inverted-U effect between response
times and responses on Likert scales, raters tend to show longer response times especially
with middle-scale responses [27,28]. In this context, ω can be modulated so that longer
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response times—which are usually provided by raters who are very hesitant about their
final choices—produce an intensification of the fuzziness whereas shorter response times—
that are usually provided by raters who are quite sure about their final choices–produce a
reduction of the fuzziness. As a result, the fuzziness of the set can be interpreted as a proxy
for the rater’s decision uncertainty. Figure 1 shows an example of the relationship between
fuzziness and the ω parameter.
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2.2. From IRTree to fIRTree

Item Response Theory (IRT) trees are conditional linear models that represent ratings
data in terms of binary trees. In general, the tree formalizes the rating response process
as a sequence of intermediate nodes, each of which corresponds to a cognitive decision,
and end-nodes, which codify the possible final choices or answers. Figure 2 depicts two
examples of IRTree models for a rating scale with three and four response categories. In
particular, the first tree (Figure 2a) formalizes a typical situation where the rater first decides
whether he/she is neutral about the item/question being assessed (Z1) and then he/she
decides about the strength of the agreement or disagreement (Z2). As a byproduct of the
binary structure, the probability of a final response (e.g., Y = 1: Neutral) can be computed
by multiplying the probabilities of each branch (e.g., P(Y = 1) = P(Z1 = 0; θ)).
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Figure 2. Example of IRTree of a rating scale with three (e.g., 0: Disagree; 1: Neutral; 2: Agree) or four
(e.g., 1: Strongly Disagree; 2: Disagree; 3: Agree; 4: Strongly Agree) response categories.

By adopting the IRT parametrization, the parameter array θ can be defined as to
contain rater-specific and item-specific parameters. Thus, the probability to agree or
disagree with an item/question can be represented as a function of a rater’s latent trait
and the specific content of the item [15]. More formally, let i ∈ {1, . . . , I} and
j ∈ {1, . . . , J} be the indices for raters and items, respectively. Then, the final response
variable Yij ∈ {1, . . . , m, . . . , M} ⊂ N (M is the maximum number of response categories)
can be written as a function of N binary variables Zijn ∈ {0, 1}, with n ∈ {1, . . . , N}
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denoting the nodes of the tree. For instance, in Figure 2a, the final response Yij = 0 cor-
responds to Zij2 = 0. For a generic pair (i, j) of data, the IRTree model consists of the
following equations:

ηi ∼ NN(0, Ση), (2)

πijn = P(Zijn = 1; θn) =
exp

(
ηin + αjn

)

1 + exp
(
ηin + αjn

) , (3)

Zijn ∼ Ber(πijn), (4)

where θn = {αj, βi}, with the arrays αj ∈ RN and ηi ∈ RN denoting the easiness of the
item and the rater’s latent trait. As is usual in IRT models, latent traits for each node are
modeled using a N-variate centered Gaussian distribution with covariance matrix Ση . In
this representation, the probability for a generic rating response can be computed as:

P(Yij = m) =
N

∏
n=1

P(Zijn = tmn; θn)
tmn

=
N

∏
n=1

(
exp

(
ηin + αjn

)
tmn

1 + exp
(
ηin + αjn

)
)δmn

(5)

where tmn ∈ {0, 1, NA} is the entry of the mapping matrix TM×N with tmn = 1 indicating
a connection from the m-th response category to the n-th node, tmn = 0 and tmn = NA
indicating no connection, whereas δmn = 0 if tmn = NA and δmn = 1 otherwise.

The parameters α1, . . . , αJ and Ση of IRTree models can be estimated either by means
of standard methods used for generalized linear mixed models—for instance, restricted
or marginal maximum likelihood [15,29]—or via expectation maximization-based algo-
rithms [30].

The fIRTree procedure relies on the use of the estimated array of parameters θ̂ and the
estimated transition probabilities P̂(Zij1), . . . , P̂(Zijn), . . . , P̂(ZijN). Further technical details
about the connection between IRTree and fIRTree can be found in [13,14]. More generally,
the input of entire procedure consists of the I × J matrices of crisp rating responses Y and
responses times T whereas the output is an array of fuzzy data Ỹ. Note that, the entry ỹij

of Ỹ is the 4-tuple {cij, lij, rij, ωij}. More in details, for each pair (i, j), fIRTree requires the
following steps:

1. Define and fit an IRTtree model to YI×J in order to obtain η̂N×1 and α̂N×1
2. Plug-in η̂N×1 and α̂N×1 into Equation (5) to obtain the estimated probability distribu-

tion P̂(Y = 1), . . . , P̂(Y = m), . . . , P̂(Y = M)
3. Compute mode cij and precision sij of the fuzzy number ỹij via the following equalities:

cij =
M

∑
y=1

y · P̂(Y = y) (6)

sij =
M

∑
y=1

(y− cij)
2 · P̂(Y = y) (7)

4. Compute left and right bounds using link equations:

lij = cij − h2 (8)

rij = cij − h2 + h1 (9)

where: h1 =
√

3.5vij − 3(cij − µij)2 (10)

h2 =
1
2
(h1 + 3cij − 3µij) (11)
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5. Compute the fuzzy membership function:

µij = (1 + cijsij)
/
(2 + sij) (12)

6. Compute the intensification parameter:

ωij = F̂(Mdn(t·j))− F̂(tij) + 1 (13)

Note that in Equation (13) the intensification parameter ωij is computed using the response
times tij of a subject i to an item j, in order to model the uncertainty of the response process.
As suggested by [7], F̂ is the empirical cumulative distribution function of the observed
response times t·j = (t1j, t2j, . . . , tij) for the j-th item/question whereas Mdn(t·j) is the
median of the vector t·j.

Note that Equation (13) can be interpreted in light of the findings provided by [28].
In particular, when the i-th rater shows a response time such that tij < Mdn(t·j) then the
uncertainty affecting the response process decreases as a function of the fuzziness of the set
(ωij > 1). Conversely, the opposite case occur when tij > Mdn(t·j).

2.3. Fuzzy Normal Linear Model with Crisp Predictors

Let Y = {Y1, . . . , Yi, . . . , Yn} be a random sample and {X1, . . . , Xj, . . . , XJ} a set of
non random variables (i.e., covariates). The i-th observation of the random sample is
associated with a specific set of covariates xi = {xi1, . . . , xij, . . . , xi J} so that the sample
consist of paired observations {(Y1, x1j), . . . , (Yi, xij), . . . , (Yn, xnj)} for j = 1, . . . , J. In order
to evaluate whether the outcomes Yi are linearly related to the covariates xi, a normal linear
model can be used:

Yi ∼ N (µi, σ2
i ) (14)

µi = β0 + xiβ

σ2
i = σ2

where {β0, β} ∈ R×RJ and σ2 ∈ R+ is constant over observations (homoscedasticity).
The Likelihood function L(θ; y) for the Normal model in Equation (14) is:

L(θ; y) = −n
2

ln(2π)− n
2

ln(σ2)− 1
2σ2 (y− Xβ)T(y− Xβ) (15)

The array of parameters is θ = {β0, β, σ2}. In the context of fIRTree data, the random
outcomes are formalized in terms of fuzzy observations and a sample of fuzzy data
ỹ = {ỹ1, . . . , ỹi, . . . , ỹn} is available instead of y. In this context, the researcher is deal-
ing with two sources of uncertainty: (i) the random variation due to the sampling process,
which is codified by σ2; (ii) the non-random subjective uncertainty due to the response
process, which is codified by the fuzzy datum ỹi. As the goal of the statistical modeling still
remains the inference of the linear relationship between the outcome Yi and the predictors
xi, we need to filter-out the fuzzy component from the data. To this end, the minimum
inaccuracy principle can be minimized [18]:

I(θ; ỹ) =
n

∑
i=1

∫
ξ∗ỹi

(y) lnL(θ; y) dy

with L(θ; y) being the likelihood function for the normal model in Equation (14), whereas
ξ∗ỹi

(y) is the standardized version of the fuzzy set ỹi, which is in turn obtained by the
following calculus:

ξỹ1,...,ỹn(y1, . . . , yn) =
ξ∗ỹ1,...,ỹn

(y1, . . . , yn)∫
· · ·
∫

ξỹ1,...,ỹn(y1, . . . , yn) dy1 · · · dyn
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As usual, the parameters θ can be obtained by solving the score equation:

∂

∂θ
I(θ; ỹ) = −

n

∑
i=1

∫
ξ∗ỹi

(yi)
∂

∂θ
lnL(θ; y) dy = 0J+2,

In this case, the solutions of the minimization problem can be obtained numerically (e.g.,
via L-BFGS algorithm).

3. Application

The aim of this section is to provide an application of the fuzzy normal linear model,
which has been applied on a real case study involving the Depression, Anxiety and Stress
Scale (DASS) [31].

3.1. Data and Variables

The dataset refers to a sample of n = 160 participants (28.7% women with mean age of
22.64 years, std. deviation of 7.43) and J = 14 items/questions from the Depression Scale
of the DASS inventory. The observed data consist of responses on a four-point rating scale
along with the response times (in ms). As typical for these studies, answers with response
times over and under two standard deviations from the mean have been removed.

The matrices Y160×14 and T160×14 of the crisp rating responses and times have been
used as input of the fIRTree procedure (see Section 2.2), which has produced as output
the matrices C160×14, L160×14, R160×14, W160×14 of fuzzy parameters. For the sake of sim-
plicity, the linear decision tree with three nodes has been used (see Figure 3). In this case,
the response process is formalized by means of three nodes, namely node A for a first
agreement/disagreement toward the item being assessed, node M for a moderate level of
agreement/disagreement, and node E for the selection of extreme response categories. The
IRTree model has been defined using the R library IRTrees [15] whereas model parameters
α and η have been estimated using the R library glmmTMB [32]. Finally, estimated centers,
left/right bounds, and intensification parameters of fuzzy numbers have been averaged in
order to obtain a composite indicator for depression [10]. Figure 4 shows the histograms of
the composite fuzzy indicator w.r.t. centers, left/right spreads, and intensification parame-
ters. Note that the magnitude of left/right spreads (Figure 4b,c) shows that a certain level
of fuzziness is present in ratings data, whereas the intensification parameter (Figure 3d)
shows a higher concentration of values closed to one (21.25%, reference range: [0.95, 1.05]).
The fuzzy indicator depression has been considered as the response variable of the next
statistical models. Three crisp predictors have been used as follows: (a) religiousness, a
categorical variable with two categories {Yes, No}; (ii) emotional_stability, a compound
indicator about personality [33], which has been derived from the Ten Item Personality
Inventory [33] as a convex combination of the items and Cronbach’s α. The following
formula has been used for the α-based composite indicator:

emotional_stabilityi = α×
J

∑
j=1

emotional_stabilityij + (1− α)×mean

(
J

∑
j=1

emotional_stabilityij

)

Note that in this context the α coefficient is used to create a crisp composite indicator where
the contribution of the single item is weighted by the overall internal consistency of the scale
they belong to. This should not be confused with the fuzzy α coefficient provided by [34],
which is instead used to assess the internal consistency of a fuzzy scale; (iii) university,
a categorical variable with two categories {Yes, No}, with Yes indicating the case where
participants have reached the university education level.
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Figure 3. Application: Histograms of the parameters of composite fuzzy indicator depression. (a):
Histogram of the centers ci distribution; (b): Histogram of left spreads (ci − li) distribution; (c):
Histogram of right spreads (ri − ci) distribution; (d): Histogram of intensification parameters (ωi)
distribution. Note that the intensification parameter shows a concentration closed to one.
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M
Y = 0

E
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Y = 3Y = 2

Figure 4. Application: Linear decision tree for the four response categories. Note that A, M, E
denote the decision nodes of disagreement, moderate agreement/disagreement, extreme agreement,
respectively.
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Histogram of the centers ci distribution; (b): Histogram of left spreads (ci − li) distribution; (c):
Histogram of right spreads (ri − ci) distribution; (d): Histogram of intensification parameters (ωi)
distribution. Note that the intensification parameter shows a concentration closed to one.

A

M
Y = 0

E
Y = 1

Y = 3Y = 2

Figure 4. Application: Linear decision tree for the four response categories. Note that A, M, E
denote the decision nodes of disagreement, moderate agreement/disagreement, extreme agreement,
respectively.
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Note that in this context the α coefficient is used to create a crisp composite indicator where the contribution of
the single item is weighted by the overall internal consistency of the scale they belong to. This should not be
confused with the fuzzy α coefficient provided by [35], which is instead used to assess the internal consistency
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Figure 4. Application: Histograms of the parameters of composite fuzzy indicator depression.
(a) Histogram of the centers ci distribution; (b) histogram of left spreads (ci − li) distribution; (c) his-
togram of right spreads (ri − ci) distribution; (d) histogram of intensification parameters (ωi) distri-
bution. Note that the intensification parameter shows a concentration closed to one.

3.2. Data Analysis and Results

In order to compare the results of the fuzzy approach to data analysis as opposed to the
standard way of analyzing this data, a normal linear model and a log-normal linear model
have been additionally defined and fit on the crisp indicators for depression and response
times. In this respect, a traditional data analysis procedure would require to estimate two
separate models, one for crisp ratings and a second one for the response times. Table 1
shows the estimated coefficients, standard errors and the associated confidence intervals
(CIs) for the two linear models. In particular, the results indicate that depression decreased
as a function of emotional_stability (β̂ = −0.232, σβ̂ = 0.029, CI = [−0.289,−0.174]),

religiousness (β̂ = −0.146, σβ̂ = 0.135, CI = [−0.412, 0.120]), and university (β̂ =

−0.280, σβ̂ = 0.119, CI = [−0.516,−0.044]). On the other hand, the results of log-normal lin-
ear model reveal a positive relationship between response times and emotional_stability
(exp(β̂) = 1.003, σβ̂ = 0.019, CI = [−0.034, 0.041]), religiousness (exp(β̂) = 1.292, σβ̂ =

0.088, CI = [0.083, 0.429]), and university (exp(β̂) = 1.176, σβ̂ = 0.078, CI = [0.008, 0.316]).
Considering that participants dedicating a larger amount of time to respond might show a
more uncertain response process [35], religious and highly educated participants seem to
provide more uncertain responses as opposed to not religious and less educated partici-
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pants. Overall, the results of traditional data analysis are consistent with the literature (e.g.,
see [36–38]). However, as a result of the two-stage data analysis, two issues might affect
the overall validity and generalization of the results, namely the need of a correction for
multiple testing and the bias that could potentially affect the inferential results of both the
linear models. Note that these two limitations derive from the fact that the linear models
being used to analyze ratings and response times entail independent inferential tests.

On the contrary, fuzzy data analysis can provide a unique statistical representation
for the analysis and interpretation of both ratings data and response times. Unlike for the
previous case, a single (fuzzy) linear normal model is instead used, where response times
have been integrated via the intensification parameter of the fuzzy sets. Table 1 shows
the results for this model. Overall, there is a significant negative relationship between
depression and emotional_stability (β̂ = −0.128, σβ̂ = 0.034, CI = [−0.195,−0.060]),

with a larger effect of religiousness (β̂ = −0.170, σβ̂ = 0.151, CI = [−0.468, 0.127]), and

university (β̂ = −0.172, σβ̂ = 0.133, CI = [−0.434, 0.090]). Interestingly, the goodness-of-

fit indices (i.e., the pseudo-R2s [39]) of the fuzzy normal linear model show quite different
results from those of the of normal linear model. Indeed, the pseudo-R2 for the fuzzy
normal linear model (pseudo-R2 = 0.304) seems to average the indices of the normal
(pseudo-R2 = 0.507) and log-normal (pseudo-R2 = 0.199) linear models. In order to assess
whether the temporal component of the ratings data plays a role in this case, an additional
fuzzy normal linear model has been defined and fit, with the matrix W being set equal
to one (i.e., W = 1160×14). The goodness-of-fit index for this model shows a goodness-of-
fit index quite closed to that of the previously estimated model (pseudo-R2

W=1 = 0.306,
pseudo-R2

W 6=1 = 0.304), which would indicate that response times provide a marginal
contribution in the analysis of depression. Finally, Figure 5 plots the fitted lines against
the observed fuzzy ratings as a function of the predictors.
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emotional_stability -0.232 (0.029) [-0.289, 0.174]
university (No vs. Yes) -0.280 (0.119) [-0.516, -0.044]
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religiousness (No vs. Yes) 0.256 (0.088) [0.083,0.429]
emotional_stability 0.003 (0.019) [-0.034,0.041]
university (No vs. Yes) 0.162 (0.078) [0.008,0.316]

pseudo-R2 = 0.199

Fuzzy Normal Linear Model:
Residuals quantiles: Q1: -0.287, Med:0.068, Q3: 0.737

β0 (Intercept) 3.383 (0.259) [2.870,3.894]
religiousness (No vs. Yes) -0.169 (0.152) [-0.469,0.130]
emotional_stability -0.127 (0.034) [-0.195,-0.060]
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Figure 5. Application: Fitted regression lines against the observed fuzzy ratings as a function of
both categorical and continuous predictors. Note that the four regression lines correspond to the four
categorical levels of religiousness and university (the line associated with religiousness:yes ∧
university:no is overlapped with the line of religiousness:no ∧ university:yes).

Figure 5. Application: Fitted regression lines against the observed fuzzy ratings as a function of both
categorical and continuous predictors. Note that the four regression lines correspond to the four
categorical levels of religiousness and university (the line associated with religiousness:yes ∧
university:no is overlapped with the line of religiousness:no ∧ university:yes).
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Table 1. Application: Estimates, standard errors, and CIs of the normal linear model on crisp ratings,
log-normal linear model on response times, and the fuzzy normal linear model on the composite
indicator depression. Note that the categorical variables have been codified with dummy coding
with the following reference levels: religiousness (ref.: No) and university (ref.: No). For all the
analyses, α = 0.05.

Models β̂ (σβ̂) (1−α%) CI

Normal Linear Model
Residuals quantiles: Q1: −0.555, Med: −0.041, Q3: 0.611

β0 (Intercept) 4.204 (0.211) [3.788, 4.621]
religiousness (No vs. Yes) −0.146 (0.135) [−0.412, 0.120]
emotional_stability −0.232 (0.029) [−0.289, 0.174]
university (No vs. Yes) −0.280 (0.119) [−0.516, −0.044]

pseudo-R2 = 0.507

Log-Normal Model
Residuals quantiles: Q1: −0.298, Med: −0.060, Q3: 2.427

β0 (Intercept) 0.138 (58.573) [7.792, 8.336]
religiousness (No vs. Yes) 0.256 (0.088) [0.083, 0.429]
emotional_stability 0.003 (0.019) [−0.034, 0.041]
university (No vs. Yes) 0.162 (0.078) [0.008, 0.316]

pseudo-R2 = 0.199

Fuzzy Normal Linear Model
Residuals quantiles: Q1: −0.287, Med: 0.068, Q3: 0.737

β0 (Intercept) 3.383 (0.259) [2.870,3.894]
religiousness (No vs. Yes) −0.169 (0.152) [−0.469,0.130]
emotional_stability −0.127 (0.034) [−0.195, −0.060]
university (No vs. Yes) −0.172 (0.134) [−0.436, 0.093]

pseudo-R2 = 0.304

4. Conclusions

In this article we have provided initial findings to the problem of analyzing ratings
data and response times with fuzzy numbers. This constitutes a crucial problem, especially
when researchers need to evaluate the subjective component of questionnaire and survey
data. A novel fuzzy rating procedure has been used (fIRTree), which allows for combining
a probabilistic model of rater’s uncertainty and response times in a unique fuzzy represen-
tation. The novelty of the solution lies in the fact that response times and ratings data can
be integrated using a common formal representation, which is in turn easy to interpret and
use. A real case study has been discussed to highlight the characteristics of the proposed
approach and a proper fuzzy data analysis has been adopted. Unlike for standard data
analyses on ratings and response times, the proposed procedure is more parsimonious
with regard to the number of statistical analyses because it requires estimating a single
statistical model instead of two separated models for crisp ratings and response times and
the number of hypothesis testing procedures preserves the interpretation of the inferential
results by using single linear tests on model’s results. However, the fIRTree-based appli-
cation has been focused on personality questionnaire data only, as they provide a more
natural context for interpreting ratings data. Further studies might also include cognitive
test-based data, which provide a well-suited framework for the joint modeling of responses
and times [40]. In a similar way, additional studies might also evaluate the extension of
fuzzy linear models to cope with the non-negativity of fuzzy responses, such as gamma or
ex-Gaussian fuzzy linear models. Considering the mapping between empirical data (i.e.,
rating responses, response times) and fuzzy numbers, a fully fuzzy solution based on fuzzy
inferential systems might be used in order to map fuzzy numbers and empirical data. For
instance, this could potentially improve the overall interpretability of the proposed method.
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