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Abstract Mediation analysis is an important statistical approach to evaluate the rela-
tionships among observed variables. The most commonly used models for mediation
analysis handle single-valued variables. However, there are several circumstances
(e.g., dimensionality reduction of large datasets, clinical patient courses, repeated
measures, masked data, uncertain data) in which the collected information can be
represented more naturally by means of intervals. In these cases, standard mediation
analyses can be ill-suited. Although interval-valued variables can be transformed into
standard single-valued variables, such procedures may mask some relevant informa-
tion provided by intervals. In this article, we present a novel and simplemodel (IMedA)
to perform mediation analysis on interval-valued variables which is based on both the
symbolic regression approach and the regression based mediation framework.We also
generalize Stolzenberg’s decomposition of effects to cope with interval-valued data.
We further introduce a specific variance based decomposition procedure to descrip-
tively evaluate the sizes of such effects. Finally, to better highlight the IMedA features
we apply our model to a real case study from behavioral contexts.
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1 Introduction

Mediation analyses are widespread in modeling underlying mechanisms of complex
relationships in empirical data (MacKinnon and Fairchild 2009; Edwards and Lambert
2007). They are successfully used in several research domains, such us behavioral and
social sciences, epidemiology, biology and agriculture (Claessens et al. 2004; Kristal
et al. 2000; Caffo et al. 2008; Wardle et al. 2008). Conceptually, mediation models are
adopted to assess situations in which the observed relation between an independent
variable, x , and a dependent variable, y, is explained using a set of third variables,
m1,m2, . . . ,mk , in the relation, called mediator variables. Considering the cause-
effect relation between x and y, the mediator variables are causally placed between x
and y such that a change in x produces changes in m j ( j = 1, . . . , k) which, in turn,
also produces changes in y. The x-m j -y pathway explains the process through which
x partially—or fully—acts on y (Baron and Kenny 1986; Yuan et al. 2013; Luo and
Geng 2016). Figure 2 depicts a graphical representation for a mediation model.

The estimation of these pathways are usually performed either using a least squares
regression approach (Bollen and Stine 1990; Edwards and Lambert 2007; Judd and
Kenny 1981) or the so-called causal inference analysis ( Imai and Van Dyk 2004; Imai
et al. 2010). In the practice of research, both approaches have been successfully used
in the literature (MacKinnon 2008).

Traditionally, methods to assess mediation have been developed for single-valued
data only. However, in some empirical contexts the observed information may show
more complex structures or patterns (e.g., interval-valued data, histogram-valued data,
symbolic-valued data) than those commonly represented by single-valued data (Diday
et al. 2008; Billard and Diday 2003). In this respect, interval-valued data are one
of the simplest and most widely known types of structured data. In particular, they
may arise in different cases such as, for instance, when (i) three-way datasets are
reduced to two-way structures (Diday et al. 2008), (ii) clinical patient course and/or
repeated measures are summarized by adopting procedures like the response feature
analysis (Frison and Pocock 1992; Everitt 1995; Arndt et al. 2000), (iii) confidential
data are masked by summarized data (Little 1993), (iv) individual sample data are
incomplete (Gómez et al. 2004), (v) empirical data are modeled by interval semi-
orders (Luce 1956; Fishburn 1973; Halff et al. 1976), (vi) observed measures are
affected by systematic uncertainty (Augustin 2002; Parchami et al. 2012; Salicone
2007). All these sources of interval-data depend upon different assumptions about the
specific data generation process (Blanco-Fernández and Winker, 2016). For instance,
some experimental settings may lead to intervals as outcome of a data aggregation
process (as for the above cases i–iv). By contrast, there exist other circumstances
in which the data generation process produces intervals per se (see the above cases
v–vi). Thus, choosing the most appropriate statistical approach to deal with interval-
valued data (e.g., possibilistic, probabilistic, and descriptive/symbolic) should follow
from substantive considerations and justifications about the data generation process
underlying empirical data (Blanco-Fernández et al. 2013b; Blanco-Fernández and
Winker 2016; Couso and Dubois 2014).

Bearing this inmind, in this contributionwepropose a novel technique formediation
analysis, named interval mediation analysis (IMedA), to deal with interval-valued as
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well as single-valued data.Our proposal is based on the general least squares regression
context (MacKinnon 2008), combining path analysis (Edwards and Lambert 2007),
and symbolic data analysis (Billard andDiday 2002;LimaNeto anddeCarvalho 2008).

The reminder of the article is organized as follows. Section 2 briefly recalls the basic
characteristics of interval-valueddata togetherwith someapplications in the behavioral
sciences. Section 3 exposes the IMedA model, parameters estimation, and model
evaluation. Section 4 illustrates procedures for computing and evaluating direct and
indirect effects of the IMedA model. Section 5 reports a brief Monte Carlo simulation
study to evaluate the performance of the IMedA algorithm whereas Sect. 6 describes
a real case study showing the application of the new approach to a behavioral dataset.
Finally, Sect. 7 concludes this article providing final remarks and suggestions for future
extensions of the current contribution.

2 Interval-valued data

Interval data can be used in modeling empirical situations where the knowledge to be
extracted is complex and/or highly structured. Unlike single-valued data, which can
just represent single and point-wise information, structured-data can always take into
account a set of additional information or sources at the same time. Interval-valued
data may arise in many research contexts. For instance, in organizational research,
studies are often conducted using the so-called within-person approach where infor-
mation regarding affects, behaviors, interpersonal interactions, work events, and other
workplace phenomena are collected over the time (Fisher and To 2012). Daily diary
methods are the most adopted techniques to regularly collect data related to immediate
or recent experiences from the same sample of people for a given interval of time. In
this context, daily measurements can be naturally represented as closed and bounded
intervals (Taris et al. 2010). Similarly, in other research domains like health sciences,
longitudinal data can be represented according to the well-known response feature
analysis approach where intervals are used to summarize the temporal property of
the data (Arndt et al. 2000; Everitt 1995; Frison and Pocock 1992). Finally, interval-
valued data might also arise when individual’s measurements are collected by means
of mouse-tracking instruments or other similar interfaces (e.g., trackball, joy-stick,
light and laser pen, wii system, etc.). In these cases, as for reaction-times, saccadic
eye movements, and brain waves, also computer-mouse movements can dynamically
measure some relevant motor components of cognitive processes which are associ-
atedwith individuals’ responses (e.g., decisional uncertainty. See: Calcagnì et al. 2017;
Calcagnì and Lombardi 2014; Johnson et al. 2012)

2.1 Basic formal definitions

The interval z̃ = [u, v] is the set of real numbers {x ∈ R| u ≤ x ≤ v} where u
and v denotes the left and right endpoints of the interval. Two intervals z̃ and b̃ are
equal if their corresponding endpoints are the same. The interval z̃ is said to be a
degenerated interval if u = v and in this case the interval simply reduces to the
singleton z̃ = {u}. The width of z̃ is defined as wdt (z̃) = v − u, whereas its midpoint
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(A) (B) (C)

Fig. 1 Graphical representations for interval-valued data: a two intervals in R1, b a collection of interval
in R2, c intervals in R3. Note that in the panel (b) a linear relation among the intervals is depicted

is mid(z̃) = (u + v)/2. The half-width of z̃ is called the spread (or radius) of z̃ and
is defined as spr(z̃) = (v − u)/2 . Interval-valued data can be easily extended to
the multidimensional case. In particular, a n × k interval matrix Z̃ is a matrix whose
elements are interval numbers, namely z̃ = (z̃i j ) = ([u, v]i j ) with i = 1, . . . , n and
j = 1, . . . , k. From a geometrical point of view, the i-th row of Z̃ can be represented
as a k-dimensional hyper-rectangle. More precisely, for k = 1, z̃ is a simple interval
in R, for k = 2, z̃ is a rectangle in R2, whereas for k ≥ 2, z̃ is an hyper-rectangle
in Rk (see Fig. 1). The width of Z̃ is the non-negative matrix of widths computed on
its interval elements zw = wdt (Z̃i j ) whereas the spreads of Z̃ is the non-negative
matrix of spreads of its interval elements zr = wdt (Z̃i j )/2. Likewise, the midpoint
of Z̃ is the matrix containing the midpoints of its interval element Zc = mid(Z̃i j ).
Further details about the formal properties and operations for interval-valued data can
be found in Moore (1966).

2.2 Centre-range parametric representation

There are several parametric representations (e.g., centered based, min-max, centre-
range) that can be adopted to describe interval-type data (Lima Neto and de Carvalho
2008). Among these, the centre-range parametrization allows to describe an inter-
val z̃ by means of its midpoint and spread: z̃ = (c, r)CR where c = mid(z̃) and
r = spr(z̃). Unlike other parametric representations for interval-valued data, the CR-
parametrization shows some nice features (Blanco-Fernández et al. 2013a). Firstly,
from a computational perspective, it always ensures well-defined intervals by simply
satisfying the non-negative condition r > 0. Secondly, the CR-representation directly
works with the parameter space Oz̃ = {(c, r) ∈ R × R+} of z̃. This would allow to
extend many classical statistical approaches to interval-valued data without consid-
ering other sophisticated manipulation methods (e.g., interval algebra). Moreover, in
the case of multidimensional interval data, the CR-representation can decompose the
n × m interval matrix Z̃ into two n × m single-valued matrices, Zc and Zr, which
contain all the parameters involved in Oz̃ . In this way, multidimensional interval-
valued data may be further manipulated according to classical statistical techniques.
Finally, the CR-representation may be very useful especially when intervals are used
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to describe empirical objects in terms of measurement precisions (by means of c) and
measurement uncertainty (by means of r ). Despite these gains, it should be stressed
that choosing a proper parametrization for interval data should follow from a gen-
eral understanding of the data generation process and the empirical conditions where
intervals are used (Blanco-Fernández and Winker 2016).

3 IMedA: interval mediation analysis

In this section we illustrate the new multiple mediation model for interval-valued data
(IMedA).

3.1 Model

Let x̃ and ỹ be n (units)×1 interval vectors representing the independent and dependent
variables, respectively. Let M̃ be a n (units)× k (mediators) interval matrix containing
the set ofmediators. By adopting theCR-parametrization for interval data, the elements
of x̃, ỹ, and M̃ can be represented by a collection of n (units)×1 single-valued vectors
xc, xr, yc, yr, and n (units)× k single-valued matricesMc,Mr. The mediation model
for interval-valued data can be expressed by two regression systems as follows:

S1 :
{
Mc = 1Ac + X! + Ec

Mr = 1Ar + (1Ac + X!)! + Er

S2 :
{
yc = 1αc + Xβ +Mcγ c +Mrγ r + ϵc

yr = 1αr + (1αc + Xβ +Mcγ c +Mrγ r)δ + ϵ r
(1)

where in both modelsX = {xc, xr} is an interval valued-variable. For S1, the matrices
Ac, Ar and ! denote k × k diagonal matrices of intercept terms and coefficients of
the ranges, X is a n × 2 column-wise stacked matrix containing the vectors xc and
xr, whereas ! is a 2 × k matrix of regression coefficients between the matrix of
mediatorsMc and the independent variables X. Finally, Ec and Er are n × k matrices
of residual terms. Similarly, for the second system S2, the scalars αc, αr , δ represent
the intercept terms and the range coefficient of themodel. Moreover, β is a 2×1 vector
of regression coefficients quantifying the relation between the independent variables
X and the dependent variable yc whereas γ c and γ r are k × 1 vectors of regression
coefficients between the matrices of mediatorsMc andMr and the dependent variable
yc, with ϵc and ϵr being n × 1 vectors of residual terms. Finally, 1 denotes matrices
(or vectors) of appropriate orders of all ones. Figure 2a (resp. 2b) shows the compact
(resp. exploded) conceptual diagram for the IMedA model.

3.2 Parameters estimation

In the IMedA model, the parameters estimates are obtained according to a standard
least squares (LS) procedure which minimizes the following dissimilarity measures:
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(A) (B)

Fig. 2 Conceptual (a) and exploded (b) diagrams for the interval mediation model. Note that the tilde
symbol denotes interval variables or interval coefficients

D2
1 = ∥Mc − Mc∗∥2 + ∥Mr − Mr∗∥2 and D2

2 = ∥yc − yc∗∥2 + ∥yr − yr∗∥2
(2)

where:Mc∗ = 1Ac +X!,Mr∗ = 1Ar +Mc∗!, yc∗ = 1αc +Xβ +Mcβ +Mrγ r ,
and yr∗ = 1αr + yc∗δ, respectively. To estimate the parameters contained in Ac,
Ar , !, !, αc, αr , δ, β, and γ , we used the alternating least squares (ALS) algorithm
(Kiers 2002). By convention, this alternating gradient-descendent algorithm converges
when ∥θ − θ̂∥2 ≤ % with θ being the array containing the model’s parameters, θ̂

the corresponding estimated array, and % a small positive quantity, respectively. The
detailed iterative ALS solutions of the model are reported in Appendix A.

3.3 Goodness-of-fit indices

The goodness of fit of the IMedAmodel can be evaluated by considering the following
two normalized indices:

R2
M = 1 − ∥Mc − Mc∗∥2 + ∥Mr − Mr∗∥2

∥Mc − 1 diag(Mc)∥2 + ∥Mr − 1 diag(Mr)∥2

R2
Y = 1 − ∥yc − yc∗∥2 + ∥yr − yr∗∥2

∥yc − yc∥2 + ∥yr − yr∥2 (3)

where diag(Mc) and diag(Mr) denote k × k diagonal matrices containing the column
means of the matrices Mc and Mr, 1 is a n × k matrix of all ones, whereas yc and yr
denote n × 1 vectors containing the mean values of yc and yr, respectively. Note that
R2
M and R2

Y take values in [0, 1] and compare the residual sum of squares with the
observed total sum of squares. The interpretations of the goodness-of-fit indices are
in line with the standard R2 measure adopted in the regression framework.
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4 Deriving direct and indirect effects

The decomposition of effects allows to quantify the amount of the total effect TE
which can be ascribed to the mediators—indirect effect IE—and the residual total
effect between the two variables when the mediators are held constant—direct effect
DE (Alwin and Hauser, 1975; Sobel, 1982; Stolzenberg, 1980; Choi and Lee, 2016).
Considering the IMedA model representation, the basic decomposition rule TE = DE
+ IE can be generalized as follows:

TEc + TEr︸ ︷︷ ︸
total effect

= (DEc + DEr )︸ ︷︷ ︸
direct effect

+ (IEc + IEr )︸ ︷︷ ︸
indirect effect

where TEc, TEr , DEc, DEr , IEc and IEr represent the interval components of TE, DE,
and IE for centers and ranges. Applying the generalized Stolzenberg’s decomposition
procedure for interval data (see Appendix B), the final decomposed effects of the
model are:

DEc = β̂c + δ̂β̂c

DEr = β̂r + δ̂β̂r

IEc = [(ξ̂ c ◦ γ̂ cT )1k + (ξ̂
c ◦ γ̂ rT ◦ !̂

T
)1k] + δ̂[(ξ̂ c ◦ γ̂ cT )1k + (ξ̂

c ◦ γ̂ rT ◦ !̂
T
)1k]

IEr = [(ξ̂ r ◦ γ̂ cT )1k + (ξ̂
r ◦ γ̂ rT ◦ !̂

T
)1k] + δ̂[(ξ̂ r ◦ γ̂ cT )1k + (ξ̂

r ◦ γ̂ rT ◦ !̂
T
)1k]
(4)

where β̂c and β̂r are the estimated parameters contained in β̂; ξ̂
c
and ξ̂

r
are 1 × k

row-vectors of the estimated matrix !̂; γ̂ c, γ̂ r , and '̂ are the estimated parameters
previously defined;1k is a k×1vector of all oneswhereas◦denotes the usualHadamard
product. Note that, the term 1k in the equations of effects allows to compute the total
indirect effect, that is to say, the sum of the elementary indirect effects. These are
the indirect effects that are associated with each of the k mediators in the model. In
particular, if we omit the term 1k from the equations of the effects, we obtain the
specific indirect effects separately for each mediator in the model.

4.1 Evaluating the size of the effects

In the context of mediation analysis, several different indices have been defined to
quantify the size of the decomposed effects such as proportion mediated index, partial
r2, residual-based indices (Fairchild et al. 2009; Preacher and Kelley 2011). In this
contribution, the indices λDE and λIE are used to descriptively evaluate the direct
and indirect effects of the IMedA model which are obtained by decomposition of the
explained variance of the model. Unlike other R2-based decompositions, which make
use of the so-called commonality analysis (e.g., see: Seibold and McPhee 1979), our
indices are defined considering the so-called reduced system obtained by merging S1
with S2 (see Appendix C). In this new equations system, the dependent variable ỹ
is modeled as a function of all the pathways expressed by the IMedA model and its
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variance can be partitioned according to a dedicated regression based decomposition
procedure (as described in: Mood and Graybill 1950; Fields 2003). This allows to
show the contribution of the direct and indirect effects in modeling the variance of ỹ.
The indices λDE and λIE are obtained as follows:

λDE = |DEσ 2
ỹ
| · *−1 λIE = |IEσ 2

ỹ
| · *−1 with λDE, λIE ∈ [0, 1] (5)

where * = DEσ 2
ỹ
+ IEσ 2

ỹ
+ RESσ 2

ỹ
is equal to the observed variability explained by

all the pathways in the IMedA model whereas the other components are defined as
follows:

DEσ 2
ỹ
=

[
cov

(
yc, xcβ̂c)+ cov(yc, xrβ̂r )+

cov
(
yr, δ̂xcβ̂c)+ cov

(
yr, δ̂xrβ̂r )

]
· ω−1 (6)

IEσ 2
ỹ
=

⎡

⎢⎢⎢⎢⎣

cov
(
yc, xc

(
ξ̂
c ◦ γ̂ c T )

1k
)
+ cov

(
yc, xc

(
ξ̂
c ◦ γ̂ r T ◦ !̂

T
)1k

)
+

cov
(
yc, xr

(
ξ̂
r ◦ γ̂ c T )1k

)
+ cov

(
yc, xr

(
ξ̂
r ◦ γ̂ r T ◦ !̂

T )
1k

)
+

cov
(
yr, δ̂xc

(
ξ̂
c ◦ γ̂ c T )1k

)
+ cov

(
yr, δ̂xc

(
ξ̂
c ◦ γ̂ r T ◦ !̂

T )
1k

)
+

cov
(
yr, δ̂xr

(
ξ̂
r ◦ γ̂ c T )

1k)+ cov
(
yr, δ̂xr(ξ̂

r ◦ γ̂ r T ◦ !̂
T
)1k

)

⎤

⎥⎥⎥⎥⎦
· ω−1

(7)

RESσ 2
ỹ
=

[
cov

(
yc, Êcγ̂ c)+ cov

(
yc, Êr γ̂ r )+

cov(yr, Êcγ̂ c δ̂)+ cov
(
yr, Êr γ̂ r δ̂

)

]

· ω−1 (8)

where ω = [var(yc)+ var(yr)]. More technical details are described in Appendix C.
In the IMedA context, λDE and λIE represent the proportion of the observed variability
explained by the effects of themodel which is exclusively due to either the direct effect
(λDE) or the indirect effect (λIE). In particular, when λDE approaches 0 (and conse-
quently, λIE approaches 1) the representation reduces to the so-called full mediation
case in which the variance explained by the effects is exclusively due to the mediators
in the model. By contrast, if λDE approaches 1 (consequently, λIE approaches 0), then
the mediation model is said to be ill-posed because mediators do not contribute in
explaining the observed variability in the model. Note that by omitting the term 1k
in the Eq. 7, we obtain k partial indices λ1IE, . . . , λ

j
IE, . . . , λ

k
IE (with

∑k
j λ

j
IE = λIE)

where each index λ
j
IE represents the proportion of the variance explained by that effect

which is specifically due to the corresponding mediator M̃ j .

5 Simulation study

The aim of this simulation study is twofold. First, we will evaluate the properties of the
estimators of the proposed IMedA-ALS algorithm. Although the least squares estima-
tors for multivariate linear regression have been extensively studied in prior simulation
works (e.g., see: Preacher and Hayes 2008; Zhang and Wang 2013; Nkurunziza and
Ejaz Ahmed 2011; Lima Neto and de Carvalho 2008; Alkhamisi 2010; Yahya and
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Olaifa 2014), in the present study we preferred to evaluate the performances of the
IMedA-ALS algorithm for the sake of completeness and to further provide converging
results.

Second, we will re-analyse the same simulated data by means of two alterna-
tive methods, namely a standard SEM approach and a regression-based mediation
approach (2SMA). The purpose here is to evaluate whether the standard approaches
can appropriately reproduce the interval-valued pathways generated by the original
IMedA model representation.

The simulation study is conducted for the case of one mediator (m = 1) and
two mediators (m = 2) models, respectively. However, because the results for the
m = 2 case largely mirrored those of the simpler m = 1 case, in the following section
we will discuss the latter case only. The results of the m = 2 case are provided as
supplementary material of this article.

5.1 Design

Two factors were systematically varied in a complete two-factorial design:

(i) the sample size (n) at four levels: 50, 250, 500, 1000;
(ii) the amount of noise (e) at four levels: 0.10, 0.30, 0.50, 0.70. Factor e is defined

as the proportion of the total variance in the data that is not accounted by the
IMedA model. Technically, the proportion of error in the data is computed by
modeling the variances of the error terms in the IMedA model using a predefined
set of values stored in two matrices, HE and Hϵ , of error variances associated
to the IMedA S1 and S2 regression systems, respectively. These values were
defined according to a previous simulation study and reflect the condition that the
proportions of explained variance accounted by the IMedA model always equal
to 1 − ek (k = 1, . . . , 4).

5.2 Procedure

Let nk and ek be distinct levels of the factors n and e respectively. The following
procedural stepswere repeated 1000 times (Q = 1000) for each of the 16 combinations
of levels of the simulation design:

1. Generate the interval data matrix x̃nk×2 = ([u, v]i j ) from the uniform distribution
U(1, 10) with [u < v]i j . Next, obtain xc and xr via the CR-parametrization on
x̃nk×2;

2. Generate themediator variablesMc
(nk×m) andMr

(nk×m) (withm = 1) by applying
the regression system S1 with Ec ∼ N (0,HE

k,c) and Er ∼ N (0,HE
k,r ) with the

following parameters: Ac = 4.8, Ar = 3.1, ! = (2.7, 4.1)T , ' = 2.04;
3. Estimate the parameters Âc

q , Â
r
q , !̂q , '̂q of the system S1 for the q-th sample by

means of the IMedA-ALS estimators (see Appendix A);
4. Generate the dependent variables yc(nk×1) and yr(nk×1) by applying the regression

system S2 with ϵc ∼ N (0,Hϵ
k,c), ϵ

r ∼ N (0,Hϵ
k,r ) and the following parameters:

αc = 3.0, αr = −5.3, β = (2.3, 1.9)T , γ c = 1.9, γ r = 0.9, and δ = −3.25.
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5. Estimate the parameters α̂c
q , α̂

r
q , β̂q , γ̂

c
q , γ̂

r
q , and δ̂q of the system S2 for the q-th

sample by means of the IMedA-ALS estimators (see Appendix A);
6. Save the estimates and proceed until q = Q.

This procedure was used to generate the estimated distributions of the regression
parameters for each combination of levels of the simulation design. The whole pro-
cedure generated a total of 1000 × 4 × 4 = 16000 new data matrices as well as an
equivalent number of parameters.

5.3 Outcome measures

The sample results were evaluated considering the following global measures that
give information about the overall performance of the IMedA-ALS estimates:

1. Average root mean square error (AMSE) computed as:

AMSE = Q−1
∑

q

√√√√J−1
∑

j

[
(θ̂q j − θq j ) · θq j−1

]2

with θq and θ̂q being the arrays of parameters of the true and estimated model,
respectively. Low values of AMSE indicate that the estimators accurately repro-
duce the true parameter values;

2. Proportion of agreement (PA) index computed as:

PA = Q−1
∑

q

[
1 −

(
∥θ̂q − θq∥2 · (∥θq∥2)−1

)]
100

The index takes values in [0, 100] and assesses how much the estimated array of
parameters θ̂ resembles the true array θ (Timmerman and Kiers 2002). When PA
is closed to 100 the estimated array θ̂ perfectly recovers the true array θ .

5.4 Results

The first column of Table 1 reports the results of the simulation study. As expected, the
AMSE index decreased almost linearlywith increasing sample sizeswhereas increased
with increasing perturbation terms e. On the contrary, the PA index increased with
increasing sample size. In particular, for n ≥ 250, PA became unaffected by factor
e. Overall, the IMedA-ALS algorithm was good and very stable also in cases of high
noise terms. Clearly, these results confirmed how the ALS algorithm—upon which
IMedA is based—generally shows accurate estimates. To summarize, IMedA-ALS
always produced excellent estimates when the amount of noise in the data was low
(e = 0.1) or moderate (e = 0.3). Moreover, also in cases of large (e = 0.5) or
extreme amount of noise (e = 0.7), IMedA-ALS still showed undistorted estimates
at least when n > 50. By contrast, for small sample sizes the performance decreased
according to the amount of noise.
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Table 1 Monte Carlo study: percentage of agreement (PA) index and average root mean square errors
(AMSE) for the array of parameters of the single mediation model (m = 1)

n, e IMedA-ALS SEM-ML SEM-WLS 2SMA

AMSE PA AMSE PA AMSE PA AMSE PA

n = 50

e1 0.11 99.45 0.44 84.36 14.67 65.89 0.44 84.37

e2 0.21 98.00 0.52 80.58 24.38 66.95 0.52 80.76

e3 0.28 95.13 0.53 80.00 21.24 61.93 0.53 80.25

e4 0.31 93.55 0.53 79.71 28.77 63.82 0.52 80.29

n = 250

e1 0.05 99.88 0.19 96.65 10.74 75.04 0.19 96.68

e2 0.08 99.64 0.22 95.79 12.26 71.98 0.21 95.99

e3 0.11 99.44 0.25 94.95 15.53 73.49 0.23 95.34

e4 0.14 99.12 0.26 94.66 25.21 71.49 0.23 95.39

n = 500

e1 0.03 99.95 0.14 98.26 6.88 79.19 0.14 98.29

e2 0.06 99.85 0.16 97.85 13.62 77.27 0.15 98.05

e3 0.08 99.73 0.19 97.27 13.52 76.35 0.16 97.67

e4 0.09 99.66 0.20 97.00 26.44 78.81 0.16 97.73

n = 1000

e1 0.02 99.98 0.10 99.17 6.79 86.15 0.10 99.20

e2 0.04 99.92 0.12 98.78 14.16 83.31 0.11 98.98

e3 0.05 99.87 0.15 98.37 6.97 82.51 0.12 98.77

e4 0.07 99.84 0.16 98.27 26.89 83.50 0.11 99.00

5.5 Further analysis, results, limitations

We also evaluated the performances of a standard SEM approach for single-valued
data and a least squares procedure for standard mediation analysis in reconstructing
the data generated in the previous simulation design (see also Fig. 2b). In particular,
SEM model fitting and estimation were implemented through the Lavaan R-package
(Rosseel 2012) using the standard SEM representation for mediation analysis with
both ML and WLS estimation procedures.1 On the contrary, the standard regression
approach, named 2SMA, was instead implemented through a combination of Matlab
scripts that modeled a step-by-step regression procedure (the estimation algorithm
is provided as supplementary material to this article). Finally, the AMSE and PA
measures were computed for each condition of the simulation design and each of the
three estimation procedures (SEM-ML, SEM-WLS, 2SMA).

The second, third, and fourth columns of the Table 1 report the ensuing results. An
inspection of Table 1 suggests how SEM-ML and 2SMA produced comparable results

1 In both SEM-ML and SEM-WLS procedures, interval variables were defined as standard single-valued
variables in terms of centers and ranges. The R code for the Lavaan mediation model for interval variables
is provided as Supplementary Material.
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in estimating the IMedA parameters. As expected, both the estimation algorithms
produced lower errors with increasing sample size. By contrast, SEM-WLS always
showed lower performances and accuracies than the other two methods. However, it
should be noted that all performances of SEM-ML, SEM-WLS, and 2SMA were not
as good as those obtained using the original IMedA-ALS algorithm. Indeed, although
SEM-ML and 2SMA provided acceptable results in resembling the true model struc-
ture provided by the IMedA pathways, they still showed an higher value of AMSE for
each condition of the simulation design even when increasing sample sizes were con-
sidered.By and large, this can reflect relevant structural differences in themodeling and
estimation procedures adopted by the other two alternative approaches. However, it
should be emphasized that the simulation scenario used in this study may be a concern
whenmore complex empirical cases are considered. But despite this limitation,we pre-
ferred to start with this simplified condition to better evaluate our IMedA-ALSmethod
under the purest and simplest reliability scenario. The results we got largely resembled
what is already known about the properties of alternating least squares estimators (e.g.,
see: Takane et al. 1977; Kim and Park 2007). Furthermore, other extensive studies are
needed to investigate in depth the performances of IMedA-ALS algorithmwith respect
to other approaches (e.g., SEM) which could potentially be used with interval-data.

6 An empirical application: role and work-related burnout

Role is an important variable in many organizational research settings (Sawyer 1992;
Toderi et al. 2013) and is considered a relevant dimension in predicting employee
health and, more in general, organizational stress (Bliese and Castro 2000). Work-
related burnout, instead, corresponds to a protracted individual response to a set of
emotional and interpersonal stressors which are presented in the organization (Alarcon
2011). In this illustrative example we tested a model in which the basic linear relation
between role (R) and work-related burnout (WB) was evaluated by considering job
satisfaction (S) and workload (WL) as mediators.

Measures In this first application we used some recently published data (Avanzi et al.
2012). In particular, data refers to Italian teachers who participated in a psychosocial
risk assessment evaluation conducted in five schools in the Trentino region (north-
east of Italy). Data were collected by means of a specific questionnaire which was
administered in two different occasions (T1 and T2). The variables were as follows:
Job satisfaction (S) was codified by asking participants to indicate to what extent they
were satisfiedwith their present job by responding on a single-item scale (ranging from
1: very little; 5: very much). Instead, work-related burnout (WB), which refers to the
degree of fatigue and exhaustion perceived by workers as being related to their work
(Kristensen et al. 2005; Avanzi et al. 2013), was measured by means of two different
five-option response formats, one for intensity and the other for frequency (Kristensen
et al. 2005). Finally, both workload (WL) and role (R) were measured by using an
Italian version of the Indicator Tool developed by Edwards et al. (2008) and adapted
by Toderi et al. (2013). In particular, workload was measured by eight items whereas
role by five items. Response formats for both scales varied from 1 (never or strongly
disagree, depending on the item) to 5 (often or strongly agree, depending on the item).
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Table 2 Case study: estimated model parameters and effects

First mediator (WL) Second mediator (S)

Values 95% CIs Values 95% CIs

Model parameters (M)

Ac 3.92 (2.88, 4.88) 0.81 (−0.45, 1.94)

Ar 0.36 (−1.59, 2.46) 0.17 (−0.99, 1.42)

' −0.08 (−0.73, 0.69) 0.08 (−0.27, 0.38)

ξξξc −0.26 (−0.50, −0.09) 0.68 (0.41, 0.96)

ξξξr 0.17 (0.09, 0.55) 0.18 (−0.14, 0.57)

Model parameters (Y)

αc 1.50 (−0.22, 2.37)

αl 0.18 (0.03, 0.38)

δ 0.03 (0.05, 0.25)

βc 0.06 (−0.06, 0.39)

βr 0.21 (0.04, 0.46)

γγγ c 0.68 (0.54, 0.81) −0.38 (−0.48, −0.24)

γγγ r 0.14 (0.07, 0.39) −0.02 (−0.16, 0.07)

Effects

DEc 0.06 (−0.06, 0.38)

DEr 0.19 (0.05, 0.46)

IEc −0.16 (−0.33, −0.02) −0.27 (−0.40, −0.12)

IEr 0.12 (0.02, 0.39) −0.10 (−0.24, −0.01)

R2
M = 0.39, R2

Y = 0.48, λDE = 0.22, λ1IE = 0.36, λ2IE = 0.42, CIs indicate the 95% confidence intervals
obtained by bias-corrected and accelerating (BCa) bootstrap with 5000 bootstrap samples (see Appendix
D for further details about the BCa procedure)

Data The sample was composed of n = 140 teachers (83% females), with a mean age
of 41.2 years (ranging from 23 to 62 with SD = 10.7) and a mean workload of 19.2
years (ranging from 2 to 37 with SD = 10.3). Because in this case the variables are
collected longitudinally, we decided to pre-process the T1–T2 variables according to
the response feature analysis (Senn et al. 2000; Everitt 1995). In particular, considering
min(T 1, T 2) andmax(T 1, T 2) as the lower and the upper bounds of intervals, centers
and ranges were defined according to the CR-parametrization. Note that, in this case,
centers express the averaged point-valued evaluation on a 5-point scale whereas ranges
directly refer to a change score over the time.

Data analysis and results The IMedA algorithm required 781 iterations to estimate the
parameters in theS1 system and 1084 iterations to estimate those in theS2 system. The
performance of the IMedAmodel were acceptable (R2

M = 0.39 and R2
Y = 0.48) and in

line with the literature (Alarcon 2011; Sutton 1998). Table 2 shows the final estimated
parameters together with the corresponding direct and indirect effects for the model.
A quick inspection of Table 2 reveals that the variance explained by all the pathways
of the model was * = 0.60 where the direct effect, the first mediator (WL), and the
second mediator (S) contributed for 22, 36, and 42% of the variance, respectively. The
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results indicate that the centers of R did not have a linear impact on WB (βc = 0.06)
whereas the ranges of R showed aweak but significant impact onWB (βr = 0.21). The
centers ofRwere negatively related toWL (ξ c1 = −0.26) but positively associatedwith
S (ξ c2 = 0.68). Considering the second regression system S2, the centers and ranges
of WL were positively associated with WB (γ c

1 = 0.68 and γ r
1 = 0.14), whereas the

centers and ranges of S were negatively related to WB (γ c
2 = −0.38, γ r

2 = −0.02).
Interestingly, in this example the direct effect of R was mainly produced by the ranges
(DEr = 0.19). By contrast, the centers did not show a significant effect (DEc = 0.06).
The results also suggest that the indirect effects for the centers and ranges were both
significant. In particular, the indirect effect through the centers of WL (IEc = −0.16)
was negative and weaker than the corresponding effect through S (IEc = −0.27).
Instead, the indirect effect through the ranges ofWL (IEr = 0.12) andS (IEr = −0.10)
showed opposite directions and both the effects were significant. Overall, considering
the centers component, the results indicated that R has a protective impact on WB
by reducing the positive relation between WL and WB. In a similar way, R improves
the negative relation between S and WB, that is to say, the more the role is perceived
as clear by the teacher, the higher is the perceived work satisfaction and the lower is
the perceived work-related burnout. By contrast, considering the ranges component,
R improves the positive impact of WL on WB whereas it makes the relation between
S and WB to vanish. Because in this context ranges are interpreted as change scores,
this result would possibly highlight how the more the teachers experience unstable
clarity of role, the more they experience workload and work-related burnout.

7 Conclusions

In this article, we developed a novel and simple model (IMedA) to perform medi-
ation analysis on interval-valued variables. As far as we know, IMedA is the first
proposal that is devoted to mediation analyses of interval data. Globally, the main
characteristic of this model is its use of two linear equations systems for modeling the
interval pathways among the independent, mediators, and dependent observed vari-
ables. This involved the extension of the well-known Stolzenberg’s decomposition to
handle with interval-valued causal effects. Relatedly, a set of variance-based indices
was also defined to quantify the sizes of such effects in the interval context. Finally,
we used a simulation study and a real application to highlight some characteristics
of the proposed model. In particular, the simulation study revealed that the IMedA
model is sufficiently accurate to reproduce the observed relationships among the inter-
val variables. Moreover, our findings also showed how IMedA outperforms existing
mediation approaches for single-valued variables that might be eventually used in
modeling interval pathways.

7.1 Model’s advantages

One nice property of the IMedA representation is that in estimating the model’s
parameters, the IMedA algorithm works similarly to an alternating recursive two-
steps procedure where the reconstruction of ranges proceeds conditionally on the
reconstruction of centers. This centre-range dependence assumption is straightfor-
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ward in an interval framework, where both the centers and ranges are key components
in determining the observed interval data structures. Moreover, IMedA-ALS allows
a simple generalization of the single-valued case as it subsumes the mediation model
for single-valued variables as a special case. Indeed, when data are expressed in terms
of degenerated intervals, the CR-parametrization always boils down to single-valued
variables (with xr = yr = 0n×1 andMr = 0n×k) and the regression systemsS1 andS2
simply reduce to the regressions for the ordinary multiple mediation analysis (MedA),
namelyM = 1A+ xξ +E and y = 1α + xβ +Mγ + ϵ (note that in this special case
also the IMedA estimators as well as the effects decomposition reduce accordingly).

7.2 Model’s limitations

However, as for other statistical procedures, also the proposed method can poten-
tially suffer from some limitations. First, if the IMedA model is fitted to empirical
data which are largely corrupted by noise, the corresponding estimates may violate
the natural constraints of interval-valued data (namely: Mr > 0n×k and yr > 0n×1)
thus possibly yielding unfeasible solutions. In these situations, a constrained version
of the algorithm based on specific optimization techniques should instead be used
(Lima Neto and de Carvalho 2010; Carpita and Ciavolino 2017). However, for the
standard unconstrained algorithm, a simple way out might consist in setting to zero
all the negative range estimates so that their natural constraints are numerically sat-
isfied. Second, some empirical contexts may require more complex models to better
evaluate the relationships among the observed variables. For instance, we may think
to moderated mediation models in which the indirect paths are partially or completely
moderated by other intervening variables (e.g., age, gender, income. See: Edwards and
Lambert 2007). Lastly, the standard assumption that mediators work in parallel could
be contrived in some particular contexts where models with serial mediators would
be instead preferred (Taylor et al. 2008). In this latter case, the IMedA representation
appears clearly inadequate to achieve such an advantage.

7.3 Future extensions

Various possible extensions of our approach can be considered in future works. For
example, moderated mediation models for interval-valued data would allow the mod-
eling ofmore complex situations inwhich themediated paths vary as a function of third
moderator variables. Likewise, interval mediation models with serial mediators may
also extend our proposal to represent situations in which researchers evaluate three-
path mediated effects. Further, also modeling correlational paths among the mediator
directly, by means of parametric covariance matrix estimators, can constitute a future
target. Several empirical situations may also require the use of mediation models han-
dling with non-linear decomposition of effects (e.g., see: Hayes and Preacher 2010).
The extension of the IMedA representation to deal with non-linear pathways among
variables can surely be considered an interesting future extension of the present article.
Finally, further simulation and benchmarking studies could be considered to exten-
sively assess IMedA-ALS properties with regards to statistical methods that can be
used in the case of interval-valued data.
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Appendix A: Solutions for IMedA model

vec(Âr ) = (Ik ⊗ 1T 1)−1 · (Ik ⊗ 1)T vec(Mr − X!! − 1Ac!); (A1)

vec(!̂) =

⎡

⎣
(Ik ⊗ !TXTX!)+
(Ik ⊗ !TXT 1Ac)+
(Ik ⊗ AcT 1T 1Ac)

⎤

⎦
−1

·
[
(Ik ⊗ X!)T vec(Mr − 1Ar)+
(Ik ⊗ 1Ac)T vec(Mr − 1Ar)

]
; (A2)

vec(!̂) =
[
(Ik ⊗ XTX)+
(! ⊗ XTX)

]−1

·
[

(Ik ⊗ X)T vec(Mc − 1Ac)+
(! ⊗ X)T vec(Mr − 1Ar − 1Ac!)

]
; (A3)

vec(Âc) =
[
(Ik ⊗ 1T 1)+
(! ⊗ 1T 1)

]−1

·
[

(Ik ⊗ 1)T vec(Mc − X!)+
(! ⊗ 1)T vec(Mr − 1Ar − X!!)

]
; (A4)

δ̂ =

⎡

⎣
αc1T 1αc + 2αc1TXβ + 2αc1TMγ+

βTXT 1αc + 2βTXTXβ + 2βTXTMγ+
γ TMT 1αc + 2γ TMTXβ + 2γ TMTMγ

⎤

⎦
−1

·

⎡

⎣
αc1T (yr − 1αr )+
βTXT (yr − 1αr )+
γ TMT (yr − 1αr )

⎤

⎦ ;

(A5)

β̂ =
[
XTX+
δXTXδ

]−1

·
[

XT (yc − 1αc − Mγ )+
XT [ yr − 1αr + (−1αc − Mγ )δ ]δ

]
; (A6)

γ̂ c =
[
McTMc+
δMcTMcδ

]−1

·
[

McT (yc − 1αc − Xβ − Mrγ r)+
McT [ yr − 1αr + (−1αc − Xβ − Mrγ r)δ ]δ

]
; (A7)

γ̂ r =
[
MrTMr+
δMrTMrδ

]−1

·
[

MrT (yr − 1αr − Xβ − Mcγ c)+
MrT [ yr − 1αr + (−1αr − Xβ − Mcγ c)δ ]δ

]
; (A8)

α̂c = 1
n(1+ δ2)

·
[

1T (yc − Xβ − Mγ )+
1T [ yr − 1αr + (−Xβ − Mγ )δ ]δ

]
; (A9)

α̂r = 1
n
· 1T [ yr − (1αc − Xβ − Mγ )δ]; (A10)

where vec(.) is the linear operator that converts a n × k matrix into a kn × 1 vector,
⊗ denotes the Kronecker product, Ik is a k × k identity matrix whereas 1 is a n × k
matrix of all ones.
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Appendix B: Decomposition of effects for IMedA model

In order to derive direct and indirect effects for the IMedA model, we proceed as
follows. Consider the regression systems S1 and S2 shown in Eq. 1:

S1 :
{
Mc = 1Ac + X! + Ec

Mr = 1Ar + (1Ac + X!)! + Er

S2 :
{
yc = 1αc + Xβ +Mcγ c +Mrγ r + ϵc

yr = 1αr + (1αc + Xβ +Mcγ c +Mrγ r)δ + ϵ r

Firstly, substitute the equations ofMc and Mr into yc and yr, as follows:

S ′
2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yc = 1αc + Xβ + [1Ac + X! + Ec]γ c+
+[1Ar + (1Ac + X!)! + Er]γ r + ϵc

yr = 1αr + (1αc + Xβ + [1Ac + X! + Ec]γ c+
+[1Ar + (1Ac + X!)! + Er]γ r )δry + ϵ r

(B1)

Multiplying through and expanding terms, using a little algebra, we obtain the follow-
ing reduced form system S ′

2:

S ′
2 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yc = 1αc + 1Acγ c + 1Arγ r + 1Ac!γ r + xc[βc + ξ c(γ c + !γ r )]
+ xr[βr + ξ r (γ c + !γ r )] + Ecγ c + Erγ r + ϵc

yr = 1αr + 1αcδ + 1Acγ cδ + 1Arγ rδ + 1Ac!γ rδ+
+ xc[βc + ξ c(γ c + !γ r )]δ + xr[βr + ξ r (γ c + !γ r )]δ
+Ecγ cδ + Erγ rδ + ϵr

(B2)

Next, taking the partial derivatives of yc and yr with respect to xc and xr we have the
equations for the total effect (TE) of the model, as follows:

⎧
⎨

⎩

∂ yc
∂ xc = δβc + ξ c(γ c + !γ r ) ∂ yc

∂ xr = δβr + ξ r (γ c + !γ r )

∂ yr
∂ xc = δβc + ξ c(γ c + !γ r )δ ∂ yr

∂ xr = δβr + ξ r (γ c + !γ r )δ

Finally, collecting and simplifying the ensuing terms, we obtain the following equa-
tions for TE:

TEyc = βc
y + βr

y + (βc
m ◦ γ c T

m )1m + (βc
m ◦ γ r T

m ◦ !)1m + (βr
m ◦ γ c T

m )1m +
+ (βr

m ◦ γ r T
m ◦ !)1m

TEyr = δry[βc
y + βr

y + (βc
m ◦ γ c T

m )1m + (βc
m ◦ γ r T

m ◦ !)1m +
+ (βr

m ◦ γ c T
m )1m + (βr

m ◦ γ r T
m ◦ !)1m] (B3)

which are in the general form of TE = DEc + DEr + IEc/c + IEc/r + IEr/c + IEr/r .
Note that the equation TEyr for yr is obtained as linear combination of TEyc through
the parameter δ.
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Appendix C: Decomposition of variance for IMedA model

Considering the reduced form system S ′
2:

S ′
2 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yc = 1αc + 1Acγ c + 1Arγ r + 1Ac!γ r + xc[βc + ξ c(γ c + !γ r )]
+ xr[βr + ξ r (γ c + !γ r )] + Ecγ c + Erγ r + ϵc

yr = 1αr + 1αcδ + 1Acγ cδ + 1Arγ rδ + 1Ac!γ rδ+
+ xc[βc + ξ c(γ c + !γ r )]δ + xr[βr + ξ r (γ c + !γ r )]δ
+Ecγ cδ + Erγ rδ + ϵr

(C1)

the following identities hold:

var(yc) = cov(yc, xcβc)+
+ cov(yc, xrβr )+ cov(yc, xc(ξ c ◦ γ cT )1k)+
+ cov(yc, xc(ξ c ◦ γ rT ◦ !T )1k)+
+ cov(yc, xr(ξ r ◦ γ cT )1k)+ cov(yc, xr(ξ r ◦ γ rT ◦ !T )1k)+
+ cov(yc,Ecγ c)+ cov(yc,Erγ r )+ cov(yc, ϵc)

var(yr) = cov(yr, δxcβc)+ cov(yr, δxrβr )+ cov(yr, δxc(ξ c ◦ γ cT )1k)+
+ cov(yr, δxc(ξ c ◦ γ rT ◦ !T )1k)+ cov(yr, δxr(ξ r ◦ γ cT )1k)+
+ cov(yr, δxr(ξ r ◦ γ rT ◦ !T )1k)+
+ cov(yr,Ecγ cδ)+ cov(yr,Erγ rδ)+ cov(yc, ϵr ) (C2)

after noticing that:

cov(yc, 1αc + 1Acγ c + 1Arγ r + 1Ac!γ r ) = 0

cov(yc, 1αr + 1αcδ + 1Acγ cδ + 1Arγ rδ + 1Ac!γ rδ) = 0

where cov(.) and var(.) indicates the covariance and variance operators, ◦ denotes the
Hadamard product whereas 1k is a k × 1 vector of all ones. The following properties
hold:
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⎡

⎢⎢⎣

cov(yc, xcβc)+ cov(yc, xrβr )+
cov(yc, xc(ξ c ◦ γ cT )1k)+ cov(yc, xc(ξ c ◦ γ rT ◦ !T )1k)+
cov(yc, xr(ξ r ◦ γ cT )1k)+ cov(yc, xr(ξ r ◦ γ rT ◦ !T )1k)+

cov(yc,Ecγ c)+ cov(yc,Erγ r )+ cov(yc, ϵc)

⎤

⎥⎥⎦
[
var(yc)

]−1 = 1

⎡

⎢⎢⎣

cov(yr, δxcβc)+ cov(yr, δxrβr )+
cov(yr, δxc(ξ c ◦ γ cT )1k)+ cov(yr, δxc(ξ c ◦ γ rT ◦ !T )1k)+
cov(yr, δxr(ξ r ◦ γ cT )1k)+ cov(yr, δxr(ξ r ◦ γ rT ◦ !T )1k)+

cov(yr,Ecγ cδ)+ cov(yr,Erγ rδ)+ cov(yr, ϵr )

⎤

⎥⎥⎦ ·
[
var(yr)

]−1 = 1

(C3)⎡

⎢⎢⎣

cov(yc, xcβc)+ cov(yc, xrβr )+
cov(yc, xc(ξ c ◦ γ cT )1k)+ cov(yc, xc(ξ c ◦ γ rT ◦ !T )1k)+
cov(yc, xr(ξ r ◦ γ cT )1k)+ cov(yc, xr(ξ r ◦ γ rT ◦ !T )1k)+

cov(yc,Ecγ c)+ cov(yc,Erγ r )

⎤

⎥⎥⎦ ·
[
var(yc)

]−1 ≈ ω1

⎡

⎢⎢⎣

cov(yr, δxcβc)+ cov(yr, δxrβr )+
cov(yr, δxc(ξ c ◦ γ cT )1k)+ cov(yr, δxc(ξ c ◦ γ rT ◦ !T )1k)+
cov(yr, δxr(ξ r ◦ γ cT )1k)+ cov(yr, δxr(ξ r ◦ γ rT ◦ !T )1k)+

cov(yr,Ecγ cδ)+ cov(yr,Erγ r δ)

⎤

⎥⎥⎦ ·
[
var(yr)

]−1 ≈ ω2

(C4)

where ω1 = ∥yc − yc∗∥2/ ∥yc − yc∥2 whereas ω2 = ∥yr − yr∗∥2/ ∥yr − yr∥2. Note
that ȳc and ȳr are n × 1 vectors containing the mean values of yc and yr whereas
yc∗ and yr∗ refers to the estimated reduced equations in S ′

2 without considering the
residual terms ϵc and ϵr . Note also that the terms in the right side of Eq. C4 denotes
the variance explained by the reduced system S ′

2.
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Appendix D: Bias-corrected and accelerated (BCa) bootstrap procedure

Bias-corrected and accelerated (BCa) is a powerful bootstrap procedure usually
adopted in mediation analysis. More precisely, Q samples (with Q ≥ 1000) of size
n are row-wise randomly drawn (with replacement) from the original matrices Mc,
Mr and original vectors yc, yr. For each q−th sample, the mediation parameters are
estimated by applying the IMedA procedure on the sample matrices Mc

q , Mr
q and

vectors ycq ,yrq . These steps are repeated for Q times. The ensuing sample parameter
distributions are then used for computing the standard errors or BCa based confidence
intervals (95% CIs) for every estimated parameter in the model. In what follows we
briefly describe how the BCa based CIs can be obtained. For the sake of generality,
considering the i-th parameter of γ̂ c

i with γ̂ c∗
i = γ̂ c

i1, γ̂
c
i2, . . . , γ̂

c
i Q denoting its

empirical distribution. The 95% BCa based confidence interval for such parameter
takes the form of [ γ̂ c∗

ig , γ̂
c∗
iv ], where g and v are, in turn, computed as follows:

g = n · 0N

(
zφ2 +

zφ2 + zα/2
1 − φ1(zφ2 + zα/2)

)
v = n · 0N

(
zφ2 +

zφ2 + z1−α/2

1 − φ1(zφ2 + z1−α/2)

)

where 0N is the cumulative normal distribution function, zα/2 = −1.96 and
z1−α/2 = 1.96 for α = 0.05 whereas zφ2 = 0−1

N (φ1, 0, 1), with 0−1
N being the

inverse cumulative normal distribution function. Note that the term zφ2 measures the
median bias of the bootstrap distribution γ̂ ∗

i where φ2 is computed as follows:

φ2 =
1
Q

∑

γ̂ c∗
i < γ̂ c

γ̂ c∗
i where γ̂ c =

∑Q
i=1 γ̂ c∗

i

Q

whereas, on the contrary, the acceleration term φ1, which measures the rate of change
of the standard deviation of γ̂ ∗

i , is computed as follows:

φ1 =
n∑

i=1

(γ̂ c∗
i − γ̂ c)3 ·

[(
6

n∑

i=1

(γ̂ c∗
i − γ̂ c)2

) 3
2
]−1

Note that, when φ1 = φ2 = 0 the BCa based CIs simply reduce to the standard
percentile CIs.
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1 Simulation Study for the m = 2 mediation case

This section contains the tabular results of the simulation study for the m = 2 case (see Section 6

of the manuscript).

Simulation design. As described in the simulation design for the m = 1 case.

Data Generation. As described for the previous case except as follows. The mediator variables

M

c and M

r as well as the dependent variables y

c and y

r are obtained by applying the interval

model depicted in Figure 2-B of the manuscript with the following parameters: Ac = diag(4.8, 2.1),

A

r = diag(3.1,�8.6), vec(⌅) = (2.7,�0.98, 4.1, 2.3)T , ⇧ = diag(2.04, 1.1), ↵c = 3.0, ↵r = �5.3,

� = (2.3, 1.9)T , �c = (1.9, 0.9), �r = (2.1,�4.3), and � = �3.25. Note that, diag(.) is the operator

that transforms a vector into a diagonal matrix whereas vec(.) transforms a kn ⇥ 1 vector into a

n⇥ k matrix.

Outcome measures. As described in the simulation design for the m = 1 case.

Results. The results are provided in the Table 1
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n, ✏
IMedA-ALS SEM-ML SEM-WLS 2SMA

amse PA amse PA amse PA amse PA

n = 50

✏1 0.41 96.11 0.64 80.37 37.42 58.93 0.64 80.42

✏2 0.43 94.54 0.67 78.46 50.23 59.97 0.66 78.88

✏3 0.46 93.00 0.71 77.18 60.93 52.87 0.70 77.68

✏4 0.48 91.99 0.71 77.22 46.97 53.90 0.69 78.10

n = 250

✏1 0.40 96.52 0.46 93.46 37.52 67.88 0.46 93.53

✏2 0.40 96.27 0.48 92.88 48.71 68.02 0.46 93.26

✏3 0.41 96.05 0.49 92.03 56.76 66.46 0.47 92.68

✏4 0.42 95.78 0.50 91.72 83.22 66.84 0.47 92.79

n = 500

✏1 0.40 96.52 0.43 94.99 41.23 72.24 0.43 95.07

✏2 0.40 96.39 0.45 94.47 34.91 72.66 0.43 94.86

✏3 0.40 96.37 0.46 93.98 39.25 69.86 0.44 94.64

✏4 0.40 96.23 0.47 93.62 51.15 71.05 0.44 94.70

n = 1000

✏1 0.40 96.52 0.42 95.84 32.84 77.52 0.42 95.91

✏2 0.40 96.50 0.43 95.38 8.45 77.66 0.42 95.77

✏3 0.40 96.46 0.45 94.92 18.36 74.91 0.42 95.59

✏4 0.40 96.40 0.46 94.60 49.70 77.24 0.42 95.68

Table 1. Second Monte Carlo study: Percentage of agreement (PA) index and average root mean

square errors (AMSE) for the array of parameters of the multiple mediation model (m = 2)
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2 2SMA algorithm and Lavaan R-code

The two-steps mediation analysis (2SMA) is based on a set of OLS regressions that are hierarchically

estimated in order to guarantee the identification of all the IMedA’s parameters. In particular, given

the IMedA model:

S1 :

8
<

:
M

c = 1A

c +X⌅+E

c

M

r = 1A

r + (1Ac +X⌅)⇧+E

r
S2 :

8
<

:
y

c = 1↵

c +X� +M

c�c +M

r�r + ✏c

y

r = 1↵

r + (1↵c +X� +M

c�c +M

r�r)� + ✏r
(1)

the parameters are estimated in two main steps, one for the system S1 and another one for S2, as

follows:

I Step: estimate b
⌅ = (XT

X)�1
X

T
M

c

b
A

c = M

c �X

b
⌅

compute M

c⇤ = 1

b
A

c +X

b
⌅

estimate b
⇧ = (Mc⇤T

M

c⇤)�1
M

c⇤T
M

r

b
A

r = M

r �M

c⇤ b
⇧

compute M

r⇤ = 1

b
A

r +M

c⇤ b
⇧

II Step: estimate b� = (XT
X)�1

X

T
y

c

b�c = (McT
M

c)�1
M

cT
y

c

b�r = (MrT
M

r)�1
M

rT
y

c

b↵c = y

c �X

b� �M

cb�c �M

rb�r

compute y

c⇤ = 1b↵c +X

b� +M

cb�c +M

rb�r

estimate b
� = (yc⇤T

y

c⇤)�1
y

c⇤T
y

r

b↵r = y

r � y

c⇤b
�

compute y

r⇤ = 1b↵r + y

c⇤b
�

Note that unlike IMedA-ALS, 2SMA does not involve an alternating gradient-descendent approach

in minimizing the loss function associated to the regression model. On the contrary, it adopts

several gradient-descent procedures that separately minimize the loss function. In this way, the

estimation of a given subset of parameters does not a↵ect the estimation of another subset. As a
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consequence, each subset of parameters satisfies the convergence of the algorithm toward a proper

local/global stationary point whereas a global convergence is not allowed in this context. There-

fore, in some circumstances, this estimation procedure may possibly yield biased results as the

parameters are independently estimated.

The following R-syntax has been used to estimate mediation paths with SEM-ML and SEM-WLS

approaches.

### How to define model in Lavaan

# model <- "mc ~ 1 + xc + xl

# ml ~ 1 + mc

# yc ~ 1 + xc + xl + mc + ml

# yl ~ 1 + yc"

# I equation: MC

# II equation: ML

# III equation: yc

# IV equation: yl

###

library("lavaan")

# Note: xc, xl, yc, yl, MC1, ML1 are column-vectors of real data generated by Matlab

# and passed through RCMD BATCH connection.

Data <- data.frame(xc,xl,yc,yl,MC1,ML1)

names(Data) <- c("xc","xl","yc","yl","MC1","ML1")

model <- " MC1 ~ 1 + xc + xl

ML1 ~ 1 + MC1

yc ~ 1 + xc + xl + MC1 + ML1

yl ~ 1 + yc"

data.estimator = "ML" #or "WLS"

fit <- sem(model, data = Data, estimator=data.estimator,likelihood="normal",

std.ov=FALSE,fixed.x=TRUE,orthogonal=TRUE, control=list(iter.max=500))

summary(fit)

convergence <- lavInspect(fit, what = "converged")

print(convergence)

est.pars <- parameterEstimates(fit)

print(est.pars)
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3 Scenario analysis for IMedA-ALS

In this section we describe the results of a short scenario analysis carried out to evaluate the

flexibility of the IMedA model in capturing all the possible linear relations among the observed

variables. In particular, we test the ability of the proposed model to recover the true structure of

the observed data over an extended set of possible scenarios. The IMedA model is defined as:

S1 :

8
<

:
M

c = 1A

c +X⌅+E

c

M

r = 1A

r + (1Ac +X⌅)⇧+E

r
S2 :

8
<

:
y

c = 1↵

c +X� +M

c�c +M

r�r + ✏c

y

r = 1↵

r + (1↵c +X� +M

c�c +M

r�r)� + ✏r
(2)

that can be considered as a constrained version of the more general model:

S1 :

8
<

:
M

c = 1A

c +X⌅+E

c

M

r = 1A

r +X⌅2 +E

r
S2 :

8
<

:
y

c = 1↵

c +X� +M

c�c +M

r�r + ✏c

y

r = 1↵

r +X�2 +M

c�c
2 +M

r�r
2 + ✏r

(3)

In particular, the systems S1 and S2 are more parsimonious than S1 and S2 as they require 12m

parameters against 16m, respectively. In order to proceed with the scenario analysis, we decide to

analyse the characteristics of the systems S2 and S2, as those ones related to the other two systems

can be easily obtained just by generalizing the ensuing results (note that S1 and S1 are formally

the same of S2 and S2). For the sake of simplicity, S2 and S2 can be re-written in terms of their

regression cores, as follows:

S⇤2 :

8
<

:
y

c = X�

y

r = X��
S⇤
2 :

8
<

:
y

c = X�

y

r = X�2

(4)

that consist of a set of two equations modeling centers and ranges by the matrix of interval-valued

independent variables. Note that, because S⇤
2 ⇢ S2 and S⇤

2 ⇢ S2, we can study the more simple

regression systems as proxies for the more complex ones. By looking at their structures we can

immediately notice how S⇤
2 is able to model all the relations among the observed variables yc, yr,

x

c, and x

r (remember that X = (xc
,x

r)) and, therefore, can be considered the golden rule in

terms of flexibility: its four parameters are capable to capture all the possible linear relationships

among the observed variables. As a consequence, we can assume S⇤
2 as the “reference point” for

any comparison of S⇤
1.

Simulation design. With regards to the interval-valued variables involved in the models’ represen-

tations, we can define the following covariance matrix:

0

BBBB@

x

c
x

r
y

c
y

r

x

c 1

x

r 0 1

y

c
a b 1

y

r
c d e 1

1

CCCCA
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that represent all the possible linear relationships among them. Because the covariance is a linear

operator, the five parameters a, b, c, d, e can take just three subsets of real values (i.e., R+
0 , R

�
0 ,

{0}). As a consequence, all the possible linear relations among the variables are 35 = 243. However,

not all scenarios can be tested in our context: indeed, because of the linear constraints realized by

the regression systems, the admissible scenarios simply reduce to 81 (e.g., constant models are here

meaningless). Finally, we selected a set of meaningful scenarios through which we test S⇤
1 and S⇤

2

(see Tables 2-3).

{a, b} > 0 {a, b} < 0 {a > 0, b < 0} {a < 0, b > 0}

1 {c, d} > 0 5 {c, d} > 0 9 {c, d} > 0 13 {c, d} > 0

2 {c, d} < 0 6 {c, d} < 0 10 {c, d} < 0 14 {c, d} < 0

3 {c > 0, d < 0} 7 {c > 0, d < 0} 11 {c > 0, d < 0} 15 {c > 0, d < 0}
4 {c < 0, d > 0} 8 {c < 0, d > 0} 12 {c < 0, d > 0} 16 {c < 0, d > 0}

Table 2. Scenario analysis: admissible scenarios (panel I)

{a = 0, b > 0} {a = 0, b < 0} {a > 0, b = 0} {a < 0, b = 0}

17 {c = 0, d > 0} 19 {c = 0, d > 0} 21 {c > 0, d = 0} 23 {c > 0, d = 0}
18 {c = 0, d < 0} 20 {c = 0, d < 0} 22 {c < 0, d = 0} 24 {c < 0, d = 0}

Table 3. Scenario analysis: admissible scenarios (panel II)

Note that Tables 2-3 reports the covariance parameters that refer to the twenty-four relationships

between exogenous (xc, xr) and endogenous (yc, yr) variables. The covariance parameter e of

the relationship between y

c and y

r can be considered by simply replicating panels I and II for

three times, obtaining so eighty-one scenarios. At this point, the scenario analysis is carried out by

generating new datasets for each scenario according to a pre-fixed covariance matrix, by applying

the regression systems S⇤
1 and S⇤

2, and by evaluating the final results in terms of reconstruction of

the original data structures.

Data generation. We created 81 semi-positive defined covariance matrices by guaranteeing that the

covariance parameters are in the desiderated natural ranges: for values in R0 the parameters a, b,

c, d, e take as large values as possible whereas for values in {0} the parameters take values in the

interval [0� ✏, 0 + ✏] with ✏ being a small positive quantity closed to zero. Each covariance matrix

defines a specific scenario. Next, for each covariance matrix, 1000 n ⇥ 4 datasets are drawn from

a normal multivariate distribution by constraining the sample covariance matrix to be as close as
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possible to the fixed covariance matrix.1 For the sake of simplicity, we used n = 50. In order to

guarantee the positiveness of ranges, the second and fourth columns of the generated data matrix

are linearly rescaled to lie in R+. Finally, on each new dataset we ran the two regression systems S⇤
1

and S⇤
2 and saved the obtained results (i.e., model’s parameters and predicted values). Overall, the

simulation procedure generated 1000 x 81 = 81000 new datasets as well as an equivalent number

of parameters and reconstructed datasets.

Outcome measures. Each simulation was evaluated considering the ability of the models S⇤
1 and

S⇤
2 in recovering the drawn data sample. Particularly, we computed means, variances, RMSE, and

AoR on the sample data y

c
q, y

r
q, f

Yq = [yc
q�y

r
q,y

c
q+y

r
q] and the corresponding reconstructed data

y

c⇤
q , yr⇤

q , e
Yq = [yc⇤

q � y

r⇤
q ,y

c⇤
q + y

r⇤
q ] (with q = 1...1000). Formally, the root mean squares error

(RMSE) is computed as:

RMSE =
p
n

�1 · ky � y

⇤k2

where y 2 {yc
,y

r
,

e
Y} whereas y⇤ 2 {yc⇤

,y

r⇤
,

f
Y

⇤}. Note that RMSE gives information about the

amount of error of reconstructed data in resembling the sample data. By contrast, the amount of

reconstruction (AoR) index and gives information about the amount of reconstruction performed

by the two regressions systems. The index is defined as follows:

AoR =
min{ky+k, ky k}
max{ky+k, ky k} with y

+ =
y

⇤T
y

kyk · y

kyk

where y and y

⇤ are defined as above. Note that AoR takes values in [0, 1] with 0 indicating that

no reconstruction occurred whereas 1 means that complete reconstruction occurred. In this con-

text, variances gives information about the rigidity/flexibility of the S⇤
1 and S⇤

2 systems in order

to reconstruct the sample data. In particular, when var(y⇤
S⇤
1
) < var(y⇤

S⇤
2
) we state the system S⇤

1

less flexible than S⇤
2 in recovering y

⇤.

Results. Tables 4-10 show the obtained results. In particular, Tables 4, 6, 8 report the AoR and

RMSE measures whereas Tables 5, 7, 9 show the mean values and variances. Table 10 shows the

regression parameters for the equation y

r computed for both the S⇤
1 and S⇤

2 systems. Overall, the

results show how S⇤
1 shows the same performances of S⇤

2 in almost all scenarios. In particular,

S⇤
1 reconstructs well the data interval-valued structures e

Y like S⇤
1 does. Moreover, the variances

computed on the reconstructed data nicely shows how S⇤
1 is flexible enough to show equivalent

1Several dissimilarities measures can be used in comparing two covariance matrices A and B. In our context, we

resort to use the following measure: D(A,B) = 1� [Tr(A ·B) · (kAkf · kBkf )�1 with f being the Frobenius norm.

Note that D(A,B) 2 [0, 1]. Among others, such matrix distance yields more strong results in terms of stability

and robustness. For further details, see: Herdin, M., Czink, N., zcelik, H., Bonek, E. (2005, June). Correlation

matrix distance, a meaningful measure for evaluation of non-stationary MIMO channels. In Vehicular Technology

Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st (Vol. 1, pp. 136-140). IEEE.
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performances of S⇤
2. This is partially guaranteed by the fact that � tends to be closed - in absolute

value - to the mean value between �

c
2 and �

2
r . By contrast, considering the interval-valued com-

ponents y

c and y

r the system S⇤
2 outperforms S⇤

1 in terms of AoR, RMSE, and variance just in

24 cases on 81 (note that in Tables such cases are in gray). In particular, in these cases the mean

amount of error of recovering (i.e., 1�AoR) is almost equal to 5% whereas the error of estimation

(RMSE) increases considerably. As a consequence, S⇤
1 becomes progressively less flexible as also

stated by the rapid decrease of the variances. Formally, this is due to the behavior of � that tends

to approximate the mean value between �

c
2 and �

2
r . Indeed, in the aforementioned cases � tends to

be closed to zero and consequently the component yr proportionally tends to be under-recovered.

Nevertheless, as a consequence of the general least squares properties, in such a case y

r⇤ tends to

assume the mean values of yr. This is the reason why S⇤
1 is still comparable with S⇤

2 in recovering
e
Y.

scenario
AoRS⇤

1
AoRS⇤

2
RMSES⇤

1
RMSES⇤

2

y

c
y

r e
Y y

c
y

r e
Y y

c
y

r e
Y y

c
y

r e
Y

1 1.000 0.996 1.000 1.000 1.000 1.000 0.060 0.276 0.282 0.003 0.000 0.003

2 0.815 0.929 0.825 0.815 0.931 0.825 6.015 1.104 6.117 6.015 1.085 6.113

3 0.943 0.916 0.941 0.943 0.985 0.947 3.234 1.201 3.453 3.232 0.515 3.273

4 0.932 0.913 0.930 0.932 0.983 0.936 3.545 1.234 3.756 3.544 0.542 3.586

5 0.816 0.927 0.825 0.816 0.928 0.826 6.015 1.123 6.121 6.015 1.119 6.120

6 1.000 0.993 0.999 1.000 0.993 0.999 0.135 0.344 0.370 0.135 0.341 0.367

7 0.936 0.911 0.934 0.936 0.983 0.940 3.460 1.242 3.679 3.458 0.538 3.501

8 0.940 0.917 0.939 0.941 0.984 0.944 3.321 1.201 3.534 3.319 0.518 3.360

9 0.957 0.911 0.953 0.957 0.970 0.958 2.851 1.245 3.114 2.849 0.729 2.942

10 0.975 0.915 0.970 0.975 0.978 0.975 2.177 1.214 2.496 2.175 0.623 2.264

11 0.985 0.992 0.985 0.985 0.994 0.986 1.662 0.363 1.702 1.661 0.312 1.691

12 0.795 0.930 0.807 0.795 0.931 0.807 6.427 1.094 6.520 6.426 1.088 6.519

13 0.968 0.914 0.964 0.968 0.975 0.969 2.442 1.216 2.732 2.441 0.654 2.528

14 0.964 0.910 0.960 0.964 0.973 0.965 2.588 1.247 2.876 2.587 0.681 2.676

15 0.802 0.931 0.813 0.802 0.931 0.813 6.329 1.096 6.424 6.329 1.095 6.424

16 1.000 1.000 1.000 1.000 1.000 1.000 0.092 0.003 0.092 0.092 0.000 0.092

17 0.944 0.961 0.945 0.944 0.961 0.945 3.185 0.823 3.291 3.185 0.823 3.291

18 0.831 0.923 0.840 0.832 0.924 0.840 5.525 1.150 5.646 5.525 1.149 5.645

19 0.838 0.921 0.846 0.838 0.922 0.846 5.407 1.167 5.533 5.407 1.166 5.533

20 0.971 0.992 0.973 0.971 0.992 0.973 2.302 0.375 2.333 2.299 0.373 2.329

21 0.998 0.992 0.998 0.998 0.992 0.998 0.542 0.369 0.657 0.541 0.362 0.653

22 0.833 0.921 0.841 0.833 0.921 0.841 5.514 1.164 5.637 5.514 1.163 5.637

23 0.835 0.921 0.843 0.835 0.922 0.843 5.489 1.162 5.612 5.489 1.162 5.612

24 0.966 0.999 0.969 0.966 0.999 0.969 2.472 0.126 2.476 2.472 0.124 2.475

Table 4. Scenario analysis (d > 0): AoR and RMSE for both the S⇤
1 and S⇤

2 systems. Note that

in gray are represented the scenarios where S⇤
1 largely di↵ers from S⇤

2.
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scenario
MVsS⇤

1
MVsS⇤

2
VsS⇤

1
VsS⇤

2

y

c
y

r e
Y y

c
y

r e
Y y

c
y

r e
Y y

c
y

r e
Y

1 12.012 3.995 12.012 12.011 3.996 12.005 40.131 1.724 553.594 40.153 1.802 551.338

2 12.021 3.991 12.021 12.020 3.991 12.049 17.528 0.522 73.050 17.541 0.563 72.654

3 11.988 3.984 11.988 11.988 3.984 11.983 33.273 0.314 83.630 33.292 1.528 77.257

4 11.928 4.023 11.928 11.927 4.023 11.877 31.936 0.253 64.825 31.963 1.518 59.740

5 12.033 4.001 12.033 12.033 4.000 12.002 18.207 0.515 74.786 18.216 0.522 74.729

6 11.950 3.994 11.950 11.951 3.994 11.986 39.913 1.678 536.203 39.931 1.679 536.221

7 12.053 4.008 12.053 12.054 4.008 12.033 32.220 0.221 56.994 32.246 1.514 52.446

8 12.010 4.007 12.010 12.010 4.007 12.061 33.040 0.333 88.181 33.058 1.542 81.475

9 12.007 4.020 12.007 12.007 4.020 11.949 38.911 0.236 73.496 38.933 1.284 69.359

10 11.987 4.004 11.987 11.988 4.004 12.011 41.789 0.300 100.673 41.819 1.418 95.278

11 11.948 3.995 11.948 11.948 3.995 11.940 38.308 1.671 512.425 38.328 1.706 511.459

12 12.022 3.980 12.022 12.023 3.980 12.082 18.474 0.585 86.175 18.481 0.599 86.079

13 12.009 3.999 12.009 12.008 3.999 11.973 40.912 0.294 96.581 40.943 1.377 91.442

14 11.964 3.995 11.964 11.964 3.995 11.912 40.426 0.216 70.080 40.449 1.340 66.001

15 12.026 4.026 12.026 12.026 4.026 12.036 20.607 0.560 92.062 20.615 0.562 92.082

16 11.986 4.005 11.986 11.986 4.006 12.007 39.910 1.812 578.486 39.926 1.811 578.543

17 11.951 3.986 11.951 11.950 3.987 11.913 29.935 1.115 267.672 29.963 1.114 267.706

18 12.000 4.002 12.000 12.001 4.003 12.014 8.825 0.460 32.404 8.829 0.465 32.639

19 11.960 4.010 11.960 11.960 4.010 12.003 10.114 0.411 33.128 10.115 0.414 33.274

20 12.017 4.004 12.017 12.018 4.005 11.994 35.302 1.661 470.070 35.361 1.661 470.556

21 11.927 4.015 11.927 11.927 4.015 11.940 40.100 1.677 537.489 40.105 1.682 537.405

22 12.002 3.980 12.002 12.002 3.980 11.983 9.095 0.418 30.173 9.096 0.420 30.315

23 12.048 3.995 12.048 12.049 3.995 12.139 9.323 0.430 31.956 9.320 0.435 32.189

24 12.014 3.995 12.014 12.013 3.995 12.009 33.593 1.810 486.395 33.598 1.811 486.423

Table 5. Scenario analysis (d > 0): means (MVs) and variances (Vs) for both the S⇤
1 and S⇤

2

systems. Note that in gray are represented the scenarios where S⇤
1 largely di↵ers from S⇤

2.
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scenario
AoRS⇤

1
AoRS⇤

2
RMSES⇤

1
RMSES⇤

2

y

c
y

r e
Y y

c
y

r e
Y y

c
y

r e
Y y

c
y

r e
Y

1 0.811 0.930 0.821 0.811 0.931 0.821 6.091 1.102 6.191 6.091 1.098 6.190

2 0.985 0.982 0.984 0.984 0.982 0.984 1.677 0.554 1.768 1.677 0.551 1.767

3 0.950 0.924 0.948 0.950 0.985 0.953 3.031 1.147 3.243 3.028 0.507 3.071

4 0.939 0.913 0.937 0.939 0.983 0.943 3.369 1.224 3.587 3.367 0.534 3.410

5 0.993 0.999 0.994 0.993 1.000 0.994 1.099 0.130 1.107 1.099 0.061 1.100

6 0.805 0.930 0.816 0.805 0.930 0.816 6.158 1.100 6.256 6.158 1.098 6.256

7 0.936 0.923 0.935 0.936 0.986 0.940 3.439 1.162 3.632 3.436 0.498 3.473

8 0.942 0.910 0.940 0.942 0.982 0.946 3.284 1.243 3.514 3.282 0.553 3.329

9 0.970 0.911 0.965 0.970 0.978 0.971 2.374 1.235 2.679 2.372 0.620 2.453

10 0.964 0.914 0.960 0.964 0.974 0.965 2.592 1.223 2.869 2.590 0.669 2.677

11 0.799 0.932 0.811 0.799 0.932 0.811 6.343 1.082 6.436 6.343 1.081 6.436

12 0.999 0.991 0.998 0.999 0.991 0.998 0.491 0.403 0.637 0.491 0.402 0.636

13 0.954 0.910 0.950 0.954 0.972 0.956 2.932 1.247 3.189 2.931 0.690 3.012

14 0.967 0.914 0.963 0.967 0.975 0.968 2.478 1.222 2.766 2.477 0.659 2.564

15 0.998 0.992 0.998 0.998 0.992 0.998 0.524 0.376 0.647 0.524 0.376 0.647

16 0.790 0.933 0.802 0.790 0.933 0.802 6.481 1.072 6.570 6.481 1.071 6.570

17 0.834 0.921 0.842 0.834 0.921 0.842 5.477 1.169 5.602 5.477 1.168 5.602

18 0.977 0.997 0.979 0.977 0.997 0.979 2.034 0.231 2.047 2.034 0.231 2.047

19 0.994 0.998 0.994 0.994 0.998 0.994 1.044 0.208 1.065 1.044 0.207 1.064

20 0.834 0.922 0.842 0.834 0.922 0.842 5.507 1.165 5.631 5.507 1.164 5.630

21 0.833 0.923 0.842 0.833 0.923 0.842 5.486 1.162 5.609 5.486 1.161 5.609

22 0.949 0.975 0.952 0.949 0.975 0.952 3.024 0.661 3.096 3.024 0.661 3.096

23 0.997 0.988 0.996 0.997 0.988 0.996 0.742 0.454 0.871 0.742 0.454 0.871

24 0.833 0.922 0.841 0.833 0.922 0.841 5.510 1.165 5.634 5.510 1.164 5.633

Table 6. Scenario analysis (d < 0): AoR and RMSE for both the S⇤
1 and S⇤

2 systems. Note that

in gray are represented the scenarios where S⇤
1 largely di↵ers from S⇤

2.
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scenario
MVsS⇤

1
MVsS⇤

2
VsS⇤

1
VsS⇤

2

y

c
y

r e
Y y

c
y

r e
Y y

c
y

r e
Y y

c
y

r e
Y

1 12.007 4.005 12.007 12.006 4.005 11.989 17.045 0.574 78.191 17.051 0.584 78.170

2 12.023 3.997 12.023 12.023 3.997 12.066 36.981 1.492 441.587 36.993 1.496 441.522

3 11.997 4.013 11.997 11.996 4.013 11.966 32.627 0.474 124.030 32.664 1.564 115.746

4 11.988 3.994 11.988 11.987 3.994 11.968 33.297 0.251 66.870 33.313 1.500 61.610

5 11.974 4.012 11.974 11.975 4.012 11.960 37.524 1.818 546.971 37.536 1.832 546.664

6 11.967 3.992 11.967 11.967 3.992 11.955 15.608 0.584 72.830 15.613 0.588 72.869

7 11.978 4.017 11.978 11.979 4.016 11.975 31.621 0.415 104.981 31.642 1.550 97.162

8 12.024 3.977 12.024 12.025 3.977 12.058 34.053 0.241 65.595 34.080 1.519 60.679

9 11.992 3.979 11.992 11.992 3.979 11.974 41.289 0.257 85.000 41.318 1.431 80.146

10 11.977 3.998 11.977 11.977 3.998 12.001 40.186 0.284 91.685 40.208 1.363 86.545

11 11.924 3.994 11.924 11.924 3.994 11.967 20.806 0.606 100.474 20.814 0.608 100.477

12 11.958 3.994 11.958 11.958 3.994 11.982 39.582 1.638 519.188 39.595 1.639 519.196

13 11.925 3.995 11.925 11.924 3.995 11.920 38.523 0.205 63.665 38.545 1.318 59.821

14 11.965 4.000 11.965 11.964 4.000 11.926 41.267 0.293 97.056 41.298 1.384 91.887

15 12.049 4.005 12.049 12.049 4.005 12.080 39.962 1.660 530.546 39.976 1.659 530.595

16 11.970 3.982 11.970 11.969 3.982 11.956 17.158 0.641 87.645 17.164 0.644 87.720

17 11.954 3.988 11.954 11.954 3.987 11.936 9.523 0.394 29.796 9.522 0.397 29.956

18 12.069 4.015 12.069 12.068 4.015 12.064 35.691 1.784 509.196 35.718 1.783 509.272

19 12.014 4.001 12.014 12.014 4.001 12.022 38.571 1.773 547.686 38.603 1.772 547.818

20 12.049 4.012 12.049 12.049 4.012 12.016 8.954 0.418 29.709 8.959 0.419 29.798

21 11.982 4.015 11.982 11.982 4.015 12.016 9.038 0.401 28.924 9.035 0.406 29.136

22 11.954 4.012 11.954 11.954 4.012 11.933 31.126 1.367 341.207 31.131 1.367 341.232

23 12.035 4.000 12.035 12.034 4.000 12.039 39.758 1.594 507.060 39.764 1.594 507.082

24 12.033 4.006 12.033 12.033 4.005 12.037 8.943 0.425 30.195 8.942 0.428 30.392

Table 7. Scenario analysis (d < 0): means (MVs) and variances (Vs) for both the S⇤
1 and S⇤

2

systems. Note that in gray are represented the scenarios where S⇤
1 largely di↵ers from S⇤

2.
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scenario
AoRS⇤

1
AoRS⇤

2
RMSES⇤

1
RMSES⇤

2

y

c
y

r e
Y y

c
y

r e
Y y

c
y

r e
Y y

c
y

r e
Y

1 0.892 0.950 0.898 0.892 0.951 0.898 4.420 0.923 4.517 4.420 0.922 4.517

2 0.904 0.950 0.909 0.904 0.950 0.909 4.160 0.929 4.264 4.160 0.928 4.264

3 1.000 0.896 0.991 1.000 1.000 1.000 0.015 1.335 1.335 0.005 0.001 0.005

4 1.000 0.898 0.991 1.000 1.000 1.000 0.025 1.324 1.324 0.024 0.002 0.024

5 0.909 0.945 0.912 0.909 0.946 0.912 4.111 0.977 4.227 4.111 0.961 4.223

6 0.905 0.954 0.909 0.905 0.954 0.910 4.148 0.893 4.244 4.148 0.890 4.243

7 1.000 0.899 0.991 1.000 1.000 1.000 0.020 1.318 1.318 0.019 0.000 0.019

8 0.999 0.897 0.991 1.000 1.000 1.000 0.270 1.333 1.363 0.270 0.038 0.274

9 1.000 0.898 0.991 1.000 1.000 1.000 0.245 1.327 1.353 0.245 0.032 0.248

10 1.000 0.898 0.991 1.000 1.000 1.000 0.249 1.331 1.357 0.248 0.031 0.251

11 0.901 0.943 0.905 0.901 0.943 0.905 4.237 0.994 4.354 4.237 0.993 4.353

12 0.894 0.947 0.899 0.894 0.947 0.899 4.381 0.957 4.485 4.381 0.956 4.485

13 1.000 0.899 0.991 1.000 1.000 1.000 0.240 1.327 1.352 0.240 0.029 0.243

14 1.000 0.898 0.991 1.000 1.000 1.000 0.259 1.325 1.353 0.258 0.033 0.261

15 0.893 0.949 0.899 0.893 0.952 0.899 4.384 0.935 4.483 4.383 0.907 4.477

16 0.906 0.946 0.910 0.906 0.947 0.910 4.125 0.962 4.237 4.125 0.954 4.235

17 0.902 0.952 0.907 0.902 0.952 0.907 4.217 0.906 4.315 4.217 0.905 4.314

18 0.904 0.955 0.908 0.904 0.955 0.908 4.183 0.879 4.276 4.183 0.878 4.275

19 0.900 0.955 0.905 0.900 0.955 0.905 4.246 0.882 4.338 4.246 0.882 4.338

20 0.901 0.953 0.906 0.901 0.953 0.906 4.220 0.904 4.318 4.220 0.903 4.317

21 0.902 0.955 0.907 0.902 0.955 0.907 4.212 0.886 4.306 4.212 0.886 4.306

22 0.907 0.952 0.911 0.907 0.952 0.911 4.113 0.907 4.213 4.113 0.906 4.213

23 0.900 0.950 0.905 0.900 0.950 0.905 4.238 0.927 4.339 4.238 0.927 4.339

24 0.906 0.953 0.910 0.906 0.953 0.910 4.134 0.908 4.234 4.134 0.907 4.234

Table 8. Scenario analysis (d = 0): AoR and RMSE for both the S⇤
1 and S⇤

2 systems. Note that

in gray are represented the scenarios where S⇤
1 largely di↵ers from S⇤

2.
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scenario
MVsS⇤

1
MVsS⇤

2
VsS⇤

1
VsS⇤

2

y

c
y

r e
Y y

c
y

r e
Y y

c
y

r e
Y y

c
y

r e
Y

1 11.997 3.994 11.997 11.996 3.994 12.029 20.278 0.954 154.814 20.287 0.956 154.824

2 11.992 3.999 11.992 11.991 3.999 11.987 22.020 0.936 164.815 22.030 0.937 164.827

3 12.039 3.986 12.039 12.038 3.986 11.987 43.652 0.004 1.293 43.667 1.842 1.159

4 12.026 3.993 12.026 12.025 3.993 12.013 43.128 0.002 0.608 43.143 1.808 0.571

5 11.954 3.988 11.954 11.955 3.988 11.872 27.971 0.827 184.925 27.988 0.860 184.437

6 11.984 4.020 11.984 11.984 4.020 11.963 22.248 0.977 173.645 22.256 0.982 173.567

7 11.990 3.984 11.990 11.991 3.983 11.959 43.534 0.002 0.544 43.549 1.794 0.512

8 11.989 3.994 11.989 11.990 3.994 11.947 42.710 0.000 0.019 42.725 1.829 0.015

9 11.988 3.994 11.988 11.988 3.994 11.972 48.403 0.004 1.600 48.423 1.820 1.461

10 11.987 4.000 11.987 11.988 4.000 11.985 48.175 0.001 0.504 48.195 1.825 0.456

11 11.996 3.992 11.996 11.996 3.992 12.035 21.495 0.774 132.756 21.504 0.776 132.743

12 11.993 4.011 11.993 11.993 4.011 11.983 20.559 0.881 144.396 20.570 0.883 144.384

13 12.017 4.010 12.017 12.016 4.010 11.997 46.908 0.002 0.766 46.929 1.816 0.718

14 12.021 3.998 12.021 12.021 3.998 12.006 48.028 0.002 0.939 48.049 1.810 0.854

15 11.976 3.991 11.976 11.975 3.991 11.969 20.078 0.918 146.880 20.090 0.971 146.082

16 11.990 3.988 11.990 11.989 3.988 11.995 22.493 0.851 152.539 22.502 0.867 152.374

17 12.002 3.980 12.002 12.002 3.980 12.004 21.776 0.965 167.816 21.795 0.965 167.798

18 12.002 4.003 12.002 12.001 4.003 12.015 22.079 1.007 177.314 22.110 1.007 177.374

19 11.959 3.978 11.959 11.960 3.978 11.958 21.623 1.003 173.139 21.640 1.003 173.130

20 11.954 3.995 11.954 11.954 3.995 11.953 21.797 0.972 169.081 21.816 0.972 169.072

21 12.003 4.004 12.003 12.003 4.004 11.943 21.802 0.994 173.157 21.803 0.995 173.242

22 11.989 3.992 11.989 11.989 3.992 11.996 22.801 0.970 176.394 22.801 0.971 176.456

23 11.961 3.982 11.961 11.961 3.982 11.938 21.583 0.934 161.068 21.584 0.935 161.156

24 12.008 4.011 12.008 12.008 4.011 12.026 22.439 0.977 175.099 22.439 0.978 175.186

Table 9. Scenario analysis (d = 0): means (MVs) and variances (Vs) for both the S⇤
1 and S⇤

2

systems. Note that in gray are represented the scenarios where S⇤
1 largely di↵ers from S⇤

2.
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scenario
d > 0 d < 0 d = 0

� �

c
2 �

r
2 � �

c
2 �

r
2 � �

c
2 �

r
2

1 0.208 0.151 0.451 0.184 0.053 0.373 0.217 0.092 0.408

2 -0.173 -0.076 -0.240 -0.201 -0.132 -0.464 -0.206 -0.088 -0.417

3 0.097 0.183 -0.639 -0.121 0.143 -0.884 0.009 0.162 -0.803

4 0.089 -0.133 0.811 -0.087 -0.176 0.673 0.006 -0.154 0.823

5 -0.168 0.064 0.281 -0.220 0.121 0.626 -0.172 0.086 0.391

6 0.205 -0.105 -0.651 0.194 -0.061 -0.336 0.210 -0.106 -0.342

7 0.083 0.135 -0.812 -0.115 0.184 -0.614 0.006 0.154 -0.812

8 0.101 -0.181 0.662 -0.084 -0.130 0.845 0.001 -0.163 0.825

9 0.078 0.156 0.290 -0.079 0.075 0.725 0.009 0.132 0.620

10 0.085 -0.066 -0.754 -0.084 -0.155 -0.341 -0.005 -0.128 -0.631

11 0.209 0.157 -0.694 0.171 0.073 -0.413 0.190 0.115 -0.513

12 -0.179 -0.079 0.385 -0.204 -0.148 0.640 -0.208 -0.107 0.592

13 0.085 0.064 0.743 -0.073 0.151 0.338 0.007 0.121 0.662

14 0.073 -0.154 -0.351 -0.084 -0.069 -0.732 0.007 -0.135 -0.594

15 -0.165 0.068 -0.416 -0.204 0.141 -0.670 -0.215 0.132 -0.520

16 0.214 -0.146 0.721 0.194 -0.078 0.421 0.195 -0.105 0.564

17 0.193 -0.076 0.865 0.204 -0.019 0.495 0.211 -0.041 0.778

18 -0.227 0.020 -0.533 -0.224 0.088 -1.043 -0.214 0.040 -0.790

19 -0.202 -0.018 0.501 -0.215 -0.082 1.069 -0.216 -0.042 0.793

20 0.213 0.092 -1.055 0.217 0.019 -0.508 0.212 0.041 -0.783

21 0.205 0.226 -0.421 0.211 0.106 -0.098 0.214 0.166 -0.198

22 -0.215 -0.107 0.094 -0.210 -0.203 0.395 -0.207 -0.164 0.197

23 -0.216 0.109 -0.101 -0.201 0.216 -0.391 -0.209 0.161 -0.195

24 0.233 -0.231 0.411 0.219 -0.109 0.095 0.209 -0.164 0.184

Table 10. Scenario analysis: regression parameters for the equation y

r for both the S⇤
1 and S⇤

2

systems. Note that in gray are represented the scenarios where S⇤
1 largely di↵ers from S⇤

2.
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