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Confirmatory Measurement Model Comparisons 
Using Latent Means 

Roger E. Millsap 
Baruch College, City University of New York 

Howard Everson 
Office of Academic Affairs, City University of New York 

Confirmatory factor analysis (CFA) is often used to verify measurement models derived from 
classical test theory: the parallel, tau-equivalent, and congeneric test models. In this application, 
CFA is traditionally applied to the observed covariance or correlation matrix, ignoring the 
observed mean structure. But CFA is easily extended to allow nonzero observed and latent 
means. The use of CFA with nonzero latent means in testing six measurement models derived 
from classical test theory is discussed. Three of these models have not been addressed previously 
in the context of CFA. The implications of the six models for observed mean and covariance 
structures are fully described. Three examples of the use of CFA in testing these models are 
presented. Some advantages and limitations in using CFA with nonzero latent means to verify 
classical measurement models are discussed. 

Introduction 

One important application of confirmatory factor analysis (CFA) lies in the 
verification of measurement models derived from classical test theory (Alwin & 
Jackson, 1980; Dwyer, 1983; Hattie, 1985; Joreskog, 1971,1978; Kenny ,1979; 
Loehlin, 1987; McDonald, 1985). Three measurement models are commonly 
discussed in the literature: the parallel, tau-equivalent, and congeneric models. 
Each model entails specific restrictions on the common factor model. CFA allows 
the investigator to impose these restrictions and test the fit of the resulting model. 
Traditionally, CFA is applied to the observed covariance matrix in fitting the 
measurement model. As a result, mean differences among the observed variables 
are ignored and do not influence the fit. But the classical measurement assumptions 
have implications for mean structures as well as covariance structures, and hence 
the observed mean structure is relevant. CFA can be formulated to incorporate 

We extend thanks to John Nesselroade for the use of the data presented in one of the 
examples, and to David Rindskopf for comments on an earlier draft of this article. Correspondence 
concerning this article should be addressed to Roger E. Millsap, Department of Psychology, 
Baruch College, City University of New York, 17  Lexington Ave., New York, NY 10010. 
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nonzero means on both observed and latent variables (Joreskog & Sorbom, 1985; 
Sorbom, 1974,1978,1982). Within this formulation, we can impose restrictions 
on the latent mean structure to reflect measurement model assumptions. 

This article describes the use of CFAwith nonzero latent means indiscriminating 
among six different measurement models arising from classical test theory. Three 
of these models have been discussed previously in the context of CFA, but the 
remaining three models have not been addressed previously. We begin with a brief 
review of the common factor model with latent means, followed by a description 
of the six measurement models. The implications of the six models for observed 
mean and covariance structures are fully described. Three examples of the 
application of these models in real data are presented, and some further applications 
are discussed. 

Factor Analysis with Latent Means 

Let X be a p  x 1 vector of observable random variables. For convenience, the 
common factor model is traditionally described under the assumption of null or 
zero means for the observed and latent variables. Nonzero means are easily 
incorporated however. The common factor model with nonzero latent means 
assumes that there exist m < p common factor or latent variables, arrayed in an 
m x 1 vector $ such that 

where v is a p  x 1 vector of intercept parameters, A is a p  x m factor pattern matrix, 
and 6 is a p  x 1 vector of unique factor variables. Let EO be the mathematical 
expectation operator. We assume that E(6) = 0 and E(66') = 0, a p  x p  diagonal 
matrix: the unique factors have zero means and are mutually uncorrelated. 
Additionally, the common factor variables are assumed to be uncorrelated with the 
unique factor variables. Let these common factor variables have nonzero 
expectations E(E) = K, an m x 1 vector, and let X be thep x p  covariance matrix for 
X. From previous assumptions, 

where Q> is the rn x m common factor covariance matrix. Equation 3 provides the 
link between the observed mean structure and the common factor model. Given 
a fixed factor pattern matrix, the parameter vectors v and K are not identified in this 
equation. The addition of any constants to K can be offset by corresponding 
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subtraction fromv. The common factor modelwith latent means posesidentification 
problems beyond those present in the zero-means model. Specific solutions to 
these problems are discussed below. 

Ifp observed variables are analyzed, the degrees of freedom for a CFA model 
with nonzero latent means will be 

where t is the number of independent parameters to be estimated. An additional 
p degrees of freedom are available in the CFA with nonzero latent means because 
thep observed means are included in the moment matrix to be analyzed. If multiple 
group data are analyzed, the df in Equation 4 can be calculated separately in each 
group and summed across groups to give the total df for the model. 

Additional assumptions are generally required if CFA is used in testing 
measurement models from classical test theory. First, the statistical tests of fit 
associated with maximum likelihood factor analysis require distributional 
assumptions. Asufficient set of assumptions is that the common and unique factor 
variables have multivariate normal distributions in the population under study. 
Secondly, we must clarify the relationship between the unique factor variable and 
the error score in cllassical test theory. As noted by several authors (Alwin & 
Jackson, 1980; Lord & Novick, 1968; McDonald, 1985; Mulaik, 1972), the two 
sets of scores have similar statistical properties, but need not be identical. Lack 
of identity can lead to problems in using CFA to verify classical measurement 
assumptions, and we return to this issue below. Until then, we assume the unique 
factor and error score variables to be identical. Finally, each of the measurement 
models to be discussed assumes a single common factor underlying thep observed 
variables in X. All of the models can be extended to the case of multiple sets of 
observed variables, with each set based on a single common factor. Models which 
allow individual observed variables to be determined by more than one common 
factor (e.g., multitrait-multimethod models) will not be considered. 

Classical Measurement Models 

Parallel Models 

The concept of parallelism among measurements is fundamental in classical 
test theory (Lord & Movick, 1968). Parallel measures are defined to have identical 
true scores and identical error score variances. In CFA with zero latent means, the 
parallel model is implemented by requiring equal factor loadings for all observed 
variables and equal unique variances (Joreskog, 1971). These restrictions yield the 
covariance structure 
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with 1 a p  x 1 unit vector, I a p  x p  identity matrix, @ the (scalar) common factor 
variance, and 8 the (scalar) unique factor variance. If the common factor loading 
is fixed to one for identification, only these two parameters are estimated. 

In a CFA with nonzero latent means, the parallel model can be 
represented by choosing v to be a null vector in Equation 3, fixing all factor 
loadings to be unity, and requiring the unique variances to be identical. Under this 
model, the covariance structure in Equation 5 holds, and the observed variables 
have identical unconditional expectations 

with K a scalar. This model contains three parameters: the common factor 
variance, common factor mean, and the unique factor variance. The degrees of 
freedom for this model are therefore calculated by setting t = 3 in Equation 4. The 
constraints given in Equation 6 provide a direct test of the parallel model 
assumption of identical true scores. 

For some purposes, a weaker version of the parallel model may be useful. This 
weaker model retains the assumption of identical error variances across measures, 
but allows true scores to differ by additive constants. Specifically, if ti is the true 
score variable for the ith measure, then 

for all i, j = 1, ...,p, i # j, with the aij being unknown constants. True scorevariances 
remain identical across measures in this model. This weaker model will be denoted 
the essentially parallel model, drawing an analogy from the essentially tau- 
equivalent model discussed in Lord and Novick (1968). 

In the CFA with latent means, the essentially parallel model is specified by 
retaining the covariance structure in Equation 5, but modifying the mean structure 
in Equation 6 

where Y is a p x 1 vector of intercepts. One of the p intercepts can be fixed for 
identification. If the jth intercept is fixed at zero for this purpose, the latent mean 
K will be estimated as the observed mean of the jth variable. The identification 
chooses an origin for the common factor variable. Any observed variable may be 
chosen for this purpose, as the choice does not affect the fit of the model or the 
estimates of the common and unique factor variances. There arep + 2 parameters 
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to be estimated in the essentially parallel model. The degrees of freedom for this 
model are calculated by setting t = p + 2 in Equation 4. 

The parallel model is a special case of the essentially parallel model in which 
all intercepts are fixed at zero. For some purposes, only essential parallelism is 
required. For example, it can be shown that the Spearman-Brown formula holds 
under essential parallelism as well as strict parallelism. The correlation between 
two essentially parallel measures gives the reliability of those measures, as is true 
for strictly parallel measures. Furthermore, the essentially parallel model may 
provide a more realistic description of actual data. Observed measures which are 
similar in content but differ in difficulty may be more adequately fit by the 
essentially parallel model. 

Tau-equivalent Models 

Tau-equivalent measures have identical true scores but may have unequal 
error variances. In a CFA with zero latent means, tau-equivalence is created by 
requiring all measures to have equal (unit) factor loadings, while allowing the 
unique variances to vary (Jbreskog, 1971). These restrictions give the covariance 
structure 

with 0 a p x p diagonal matrix. This model contains p + 1 parameters to be 
estimated. 

In a CFA with nonzero latent means, we can distinguish between tau- 
equivalence and essential tau-equivalence (Lord & Novick, 1968). Tau-equivalent 
measures have identical true scores, whereas essentially tau-equivalent measures 
have true scores which differ by additive constants as in Equation 7. Error 
variances may differ in both models, but true scorevariances are identical. The tau- 
equivalent model is implemented by combining the covariance structure in 
Equation 9 with the mean structure in Equation 6. The common factor mean, 
common factor variance, and thep unique factor variances will each be estiinated, 
a total o f p  + 2 parameters. The degrees of freedom for this model are found by 
setting t = p  + 2 in Equation 4. The essentially tau-equivalent model i s  created by 
combining the covariance structure in Equation 9 with the mean structure in 
Equation 8. The intercept identification problem is the same as that in the 
essentially parallel model and can be resolved in the same way. The essentially 
tau-equivalent model requires 2p + 1 parameters, and the degrees of freedam are 
calculated by setting t = 2p + 1 in Equation 4. 

Essential tau-equivalence is a weaker condition than tau-equivalence, but is 
sufficient for some applications. As an example, the alpha coefficient provides an 
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exact reliability estimate, rather than a lower bound, under either tau-equivalence 
or essential tau-equivalence (Lord & Novick, 1968). In ability or achievement 
testing applications, essentially tau-equivalent measures vary in difficulty but 
measure the same thing, whereas tau-equivalent measures are of equal difficulty. 
Both tau-equivalent models allow the observed measures to differ in reliability, 
unlike the parallel models. 

Congeneric Models 

Congeneric measures, first proposed by Joreskog (1971) and anticipated by 
Meredith (1965), have linearly equivalent true scores and unequal error variances. 
Linear equivalence holds if the true scores on any given measure are a linear 
function of the true scores on any other measure: 

for i, j = 1, ..., p, i z j, with BI, and alj being unknown constants. As discussed by 
Joreskog (1971), congeneric measures share a single common factor. Equation 10 
implies that true score means and variances may differ across congeneric 
measures, allowing different true score scales. This flexibility is often desirable 
in models for psychologicaI measurements. If Equation 10 does not hold, the true 
scores on the ith and jth measures will not be perfectly correlated, and the measures 
do not share a common factor. In this case, we might conclude that the two 
measures are no longer measuring the same thing, although generalizations that 
would allow nonlinear relations among true scores could also be considered 
(Meredith, 1965). In a CFA with zero latent means, the congeneric model is 
specified by allowing both the factor loadings and the unique variances to vary 
across measures, giving a covariance structure 

with h a p  x 1 vector of factor loadings. To identify the model, one factor loading 
can be fixed to a nonzero value (usually unity) or the common factor variance can 
be fixed, leaving 2p parameters to be estimated. 

In a CFA with nonzero latent means, we can distinguish between congeneric 
and essentially congeneric models. For consistency with the previously defined 
essentially parallel and tau-equivalent models, we will describe measures as 
essentially congeneric if Equation 10 holds with nonzero av, and congeneric if 
aij = 0 for all i and j in Equation 10. Congeneric measures have true scores that are 
strictly proportional. The congeneric model can be specified in a CFA with latent 
means by combining the covariance structure in Equation 11 with the mean 
structure 
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This model can be identified by fixing one factor loading to unity, or by fixing the 
common factor variance to unity, leaving 2p + 1 parameters to be estimated. The 
degrees of freedom for this model are found by setting t = 2p + 1 in Equation 4. 

In a CFA with nonzero latent means, the essentially congeneric model is 
specified by combining the covariance structure in Equation 11 with the mean 
structure in Equation 3. One intercept can be fixed for identification. If one of the 
factor loadings has been fixed for identification, we can fix the intercept 
corresponding to the variable whose factor loading is fixed. A convenient value 
for the fixed intercept is zero. If the corresponding factor loading is fixed at unity, 
the common factor mean K is estimated as the mean of the observed variable whose 
loading is fixed. There are 3p parameters to be estimated in this model, and the 
degrees of freedom are calculated by setting t = 3p in Equation 4 .  

If the congeneric model holds, differences in observed means are attributable 
to differences in the factor loadings among the measures. Furthermore, any 
constraints that are placed upon these loadings will alter the fit of the model to the 
observed mean structure. If the essentially congeneric model holds, differences in 
the observed means may be due to different intercepts, different factor loadings, 
or both. Constraints placed upon the factor loadings may not directly affect the fit 
of the model to the observed mean structure because changes in the loadings could 
be offset by shifts in the intercepts. 

To summarize, we have considered six different measurement models which 
may be distinguished using CFA with nonzero latent means. The models have 
different implications for observed moment structures: means, variances, and 
covariances. For example, only the parallel and tau-equivalent models imply 
equal observed means, and only the parallel and essentially parallel models imply 
equal observed variances. All of the models except the congeneric and essentially 
congeneric models imply equal covariances among all pairs of observed measures. 
The parallel and essentially parallel models imply equal correlations among such 
pairs. 

Evaluation ofFit 

The logical nesting among the six measurement models can provide a basis 
for hierarchical fit-testing. All of the models can be viewed as special cases of the 
essentially congeneric model, with the parallel model being the most restrictive. 
The parallel, tau-equivalent, and congeneric models are each nested within their 
essential counterparts. The congeneric and essentially tau-equivalent models are 
not nested, and cannot be hierarchically compared. The same condition holds for 
the tau-equivalent and essentially parallel models. 
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Although the traditional chi-square statistic can be used for the evaluation of 
fit, most researchers will use additional goodness-of-fit indices. Fit indices in 
structural equation models have been intensively studied in recent years (Akaike, 
1987; Bentler & Bonett, 1980; Cudeck & Browne, 1983; Hoelter, 1983; James, 
Mulaik, & Brett, 1982; La Du & Tanaka, 1989; Marsh, Balla, & McDonald, 1988; 
Mulaik, James, Van Alstine, Bennett, Lind, & Stilwell, 1989; Sobel & Bohrnstedt, 
1985; Tanaka, 1987; Tanaka & Huba, 1985). Several fit indices, such as the 
normed fit index (Bentler & Bonett, 1980) or the parsimonious fit index (James, 
Mulaik, & Brett, 1982), require specification of a null model whose fit serves as 
a reference point for comparisons. More recent fit indices that employ estimates 
of the chi-square noncentrality parameter (Bentler, 1990; McDonald & Marsh, 
1990) may also assess comparative fit in relation to the null model. The typical 
null model in the CFA with zero latent means assumes no common factors 
implying an observed covariance matrix that is diagonal. In the CFA with nonzero 
latent means, a null model that assumes no common factors can also be created, 
but additional restrictions might be considered. Two of the measurement models 
described earlier entail equality restrictions on the unique variances. These 
restrictions can be incorporated in the null model as well. In addition, the mean 
structure can be restricted in the null model in various ways. One option would 
add restrictions that imply equal observed means, without specifying their 
common value. A useful null model that incorporates both variance and mean 
equality restrictions can be implemented by restricting the common factor 
variance to be zero in the parallel model described earlier. The resulting null model 
contains two parameters: the unique factor variance and the latent mean. If this 
model is implemented through the analysis of the observed moment matrix, the 
model does not imply a diagonal moment matrix. 

It should be noted that theparallel model as traditionally represented in the 
CFA with zero latent means is equivalent to the essentially parallel model in the 
nonzero latent means CFA. The chi-square fit statistic and degrees of freedom are 
the same for these two models. Similarly, the tau-equivalent model as implemented 
in the CFA with zero latent means is equivalent to the essentially tau-equivalent 
model in the nonzero latent means CFA, and the congeneric model in the CFA with 
zero latent means is equivalent to the essentially congeneric model described 
earlier. 

Uniqueness and Error 

' One difficulty in using CFA to test measurement models implied by classical 
test theory concerns the relationship between the unique factor scores in factor 
analysis and the error scores in test theory. By assumption, these two sets of scores 
have similar statistical properties. But traditionally, the unique factor variance 
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may include both the error score variance and a portion of the true score variance, 
the specific variance. Conceptually, the specific variance is that portion of the true 
score variance that is not linearly related to the postulated common factor(s). To 
illustrate, suppose that the factor analysis could be conducted using true scores, 
rather than observed scores. The specific variance would be equal to the unique 
variance in such an analysis. Alternatively, we can view the specific variance as 
the residual variance in the regression of the true scores on the common factors. 
In a confirmatory analysis the specific variance will depend upon the number of 
common factors and their hypothesized structure. The choice of which observed 
variables are included in the set to be analyzed should also affect the magnitude 
of the specific variance. 

The specific variance is not separately identified as a model parameter and 
cannot be estimated in the standard common factor model. Two alternative 
approaches can be used to check for the existence of specific variance. If accurate 
reliability estimates are available, the error variance can be directly estimated and 
compared with the unique variance estimate provided by the factor analysis. 
Alternatively, second-order factor analysis can be used to separate the specific and 
error portions of the unique variance. Joreskog (l971), and Rindskopf and Rose 
(1988) describe the use of second-order factor analysis for this purpose. The 
specific variance is estimated as the unique variance in the second-order factor 
analysis. The use of second-order factor analysis requires multiple first-order 
factors. Rindskopf and Rose (1988) review the conditions which must be met for 
identification in a second-order analysis. 

If no estimation of the specific variance is possible, the assumption of no 
specific variance should be made only after careful consideration of the observed 
variables and the postulated common factors. The specific variance is zero only 
if the common factors account for all true score variation in the observed measures. 
If the specific variance is nonzero, equality of unique variances is not equivalent 
to equality of error variances across observed measures. Parallel measures cannot 
be distinguished from tau-equivalent measures using CFA in this case. If we 
remove the parallel/tau-equivalent distinction and label all such measures tau- 
equivalent, we are left with four measurement models: tau-equivalent, essentially 
tau-equivalent, congeneric and essentially congeneric. These four models may be 
distinguished within a CFA using nonzero latent means, allowing a direct 
empirical check on the assumption of equal true scores in the tau-equivalent model. 

Examples 

The first example illustrates each of the six measurement models in data 
provided by 200 male college freshman on the three subtests of the Reading 
Comprehension Test, part of the Descriptive Tests of Language Skills (College 
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Board, 1978). The subtests measure three components of reading comprehension: 
recognizing main ideas, understanding direct statements, and drawing inferences. 
Each subtest contains items in a multiple choice format. The subtests differ in 
length, and we would not expect the parallel or tau-equivalent models to provide 
adequate fits. The analyses reported in this example, and all subsequent examples, 
were performed using the LISREL VI program (Joreskog & Sorbom, 1985). The 
LISRELVI program manual describes the implementation of latent means within 
the program. Further discussion can be found in Hayduk (1987) or Bollen (1989). 
Table 1 gives the augmented moment matrix used in the analysis. The row labelled 
unit gives the observed means for the three subtests. Given three observed 
variables, all of the measurement models are overidentified except the essentially 
congeneric model, which is just identified. 

The six models are each fit to the data for purposes of illustration. Table 2 gives 
the parameter estimates and test statistics for all models. Note that in all essential 
models, the common factor mean K is estimated as the observed mean of the first 
subtest because of the choice of identification in the intercepts. In the essentially 
parallel and essentially tau-equivalent models, the intercepts are estimated as 
deviations of the observed means for each subtest from the mean of the subtest 
whose intercept was fixed to zero for identification. This is not true in the 
essentially congeneric model because of the unequal factor loadings. The 
essentially parallel model provides an adequate and parsimonious fit to these data. 
The parallel and tau-equivalent models, which imply equal observed means across 
measures, give poor fits as expected. If the traditionalparallel, tau-equivalent, or 
congeneric models are fit to these data using CFA with zero latent means, the 
resulting chi-square fit statistics are equal to those given by the essentially parallel, 
essentially tau-equivalent, or essentially congeneric models (respectively) in 
Table 2. 

Table 1 
1) 

Rl* R2 R3 UNIT 

R1 107.195 
R2 82.680 67.005 
R3 106.545 83.905 110.325 
UNIT 9.955 7.775 10.105 1.000 

* R1= Recognizingmain ideas, R2 = Understanding direct statements, R3 =Drawing inferences, 
UNIT = Unit vector 
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Table 2 
Parameter Estimates and Test Statistics for the Readin Subtest Data in the Male 
S a m ~ l e  -- 

Model' 

Parameter ETE 

o* 
-2.180 
0.150 

1 * 
1 * 
1 * 

9.955 
5.430 
2.347 
1.620 
2.375 

2 
3.47 

P =Parallel, EP = Essentially parallel, TE = Tau-equivalent, ETE = Essentially Tau-equivalent, 
C = Congeneric, EC = Essentially congeneric 
*Fixed parameter 

The second example considers theuse of the measurement models in data from 
multiple groups of examinees. In multiple group data, we can examine the 
measurement properties of the variables both within and between groups. For 
example, we might investigate whether underlying model parameters, such as 
factor loadings and intercepts, are invariant across groups. Within a single group, 
the regression of the observed variables X on the common factor 5 can be expressed 
under the essentially congeneric model as 

If the factor loadings or intercepts differ across groups, a given common factor 
score will correspond to different expected observed scores in different groups. 
As a result, the factor may not have an interpretation that is common to all groups, 
particularly if the factor loadings show group differences. Interpretation is greatly 
simplified if the factor loadings and intercepts are invariant across groups. Group 
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comparisons of latent means then have clear implications for differences in 
observed means. Comparisons of latent means may be particularly interesting if 
one or moregroups have been given experimental treatments prior to measurement. 

The data for the second example combine the Reading Comprehension Test 
data from the first example with additional data on the same variables provided by 
182 female freshmen, resulting in two groups of examinees defined by gender. 
Table 3 gives the augmented moment matrix for the females. We first determine 
which measurement model provides an acceptable fit to the data within both 
groups. The parallel and tau-equivalent models are not considered because these 
models would predict equal observed means among the three measures. The 
essentially congenericmodel is just-identified unless further invariance restrictions 
are imposed. The essentially parallel, essentially tau-equivalent, and congeneric 
models are each fit to the data. Goodness-of-fit statistics for these tests, and those 
which follow, are given in Table 4. The congeneric model appears to give the best 
fit of the three models. Although the essentially tau-equivalent model fit well in 
the male group in the first example, modification indices suggest that in the female 
group the requirement of equal factor loadings is too stringent. The congeneric 
model relaxes the requirement of equal factor loadings, but assumes null intercepts. 

Given a measurement model that provides an adequate fit in each group, we 
can examine invariance restrictions on the model parameters. Within the 
congeneric model, we first require each variable to have the same factor loading 
across groups, but allow the loadings to differ among variables. The chi-square 
statistic given in Table 4 indicates that these invariance restrictions do not impair 
the fit of the model. We conclude that the regression function given in Equation 
13 is identical across groups, and that the subtests provide equivalent measures 
across groups in this sense. As a further restriction, we require the latent means 
K to be identical across groups. The chi-square statistic in Table 4 suggests that 
this restriction is too stringent. There appear to be gender differences in the latent 

Table 3 
Reading Subtest Moment Matrix for Females (N = 182) 

Rl* R2 R3 UNIT - 
R 1 84.687 
R2 64.363 52.885 
R3 86.335 67.440 92.605 
UNIT 8.676 6.841 9.143 1.000 

* R1 =Recognizing main ideas, R2 = Understanding direct statements, R3 =Drawing inferences, 
UNIT = Unit vector 
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Table 4 
Test Statistics for Models in Male and Female Reading Data 

Model X' df x2 Diff Diff df - 
Essentially Parallel 30.43 8 
Essentially Tau-equivilent 26.71 4 
Congeneric 6.41 4 

Am = Af 9.57 6 3.16 2 

K~ = K~ 25.54 7 15.97 1 

means. Under the previous model with invariant factor loadings, the male latent 
mean was estimated as 9.890 and the female mean as 8.775. The gender difference 
is consistent with the differences in observed means, with males receiving higher 
scores. 

In comparing latent mean and intercept values across groups, it should be 
remembered that the identification chosen for these parameters will affect their 
estimates. If the parameters are identified by fixing a particular intercept to zero, 
then the same observed variable should be chosen for this purpose in each group. 
Suppose that essentially congeneric models are fit, with identification achieved by 
fixing a specific intercept to zero in each group. Without further constraints, this 
identification results in a latent mean estimate equal to the observed mean for the 
variable whose intercept was fixed in each group. Suppose that additional 
constraints are introduced to achieve invariance in factor loadings and intercepts 
across groups, as in the second example above. If a test of equality of latent means 
across groups is then performed, the results of this test do not depend on which 
intercept was fixed in the initial identification. The same chi-square statistic (and 
other fit indicators) will be found regardless of the initial choice of intercept. 
However, the values of the latent mean estimates do depend on the choice of 
identification. This fact must be considered in reporting the results of such an 
analysis. 

As a final example, we consider the application of the measurement models 
in longitudinal data. In such data, the measurement properties of the observed 
variables may change over time. For example, the intercepts and factor loadings 
in Equation 13 may shift over time. If the measurement model remains stable or 
stationary over time, we can examine changes in the latent means. Changes in 
these means may be difficult to interpret if the measurement model is also 
changing. To illustrate, let XI be the vector of observed variables at occasion one, 
and X, be the vector of observed variables at occasion two, with D = X2 - X,. Then 
from Equation 3, we can express the unconditional expectation of D as 
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Clearly, equality of the latent means is not sufficient for this expectation to be zero 
unless stationarity in the intercepts and factor loadings also holds. If the factor 
loadings are stationary, then changes in the latent means are linearly related to 
changes in the observed means 

(15) E(D) = (v, - v,) + A(K, - K,). 

If the further requirement of stationarity in intercepts is met, the hypothesis of no 
true mean change (K, = K,) is equivalent to the hypothesis of no observed mean 
change: E(D) = 0. 

The data for this example are taken from a study by Nesselroade and Baltes 
(1974) that used measures from the Primary Mental Abilities Test (PMA) 
(Thurstone & Thurstone, 1962). The examinees are 99 female students measured 
on two occasions during grades 7 and 8. We only present data on three of the six 
subtests from the PMA: verbal meaning, number facility, and word groupings. 
These three subtests can be viewed as measures of crystallized intelligence 
(although number facility may have a fluid component), and therefore it is 
reasonable to attempt to fit a single common factor to them. The augmented 
moment matrix is given in Table 5. We begin the analysis with a model that 
assumes the measures are essentially congeneric within each occasion, with no 
stationarity restrictions: 

In the above, x, to x, are the three subtests measured on the first occasion, and x4 
to x6 are the three subtests measured on the second occasion. Note that there are 
two factors, one for each occasion, and that each variable loads on only a single 
factor. The two common factors may freely correlate across occasions. In 
longitudinal data, it may be unreasonable to assume that the unique factors are 
mutually uncorrelated. We begin by allowing autocorrelations between unique 
factors corresponding to the same variable measured on two occasions. For 
example, 6 ,  and 6, may be correlated. 

Table 6 gives goodness-of-fit statistics for the models fit to these data. The 
baseline model is essentially congeneric as described above, and this model gives 
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Table 5 
Moment matrix for PMA Data [N = 99) 

Verbml 

Verbml 80.586 
Numbfl 88.1411 
Wordgl 114.354 
Verbm2 97.303 
Numbf2 109.121 
Wordg2 127.061 
Unit 8.000 

- - 

Numbf 1 
- 

Wordgl Verbm2 Numbf2 Wordg2 Unit ----- 

Note. Key to abbreviations: Verbm = Verbal Memory, Numbf = Number Facility, Wordg = 
Word Grouping 

a good fit. The next model imposes stationarity on the factor loadings. This 
constraint does not impair the fit of the model. The following model adds the 
constraint of stationary intercepts. As indicated by the difference in the chi-square 
statistics, this additional constraint fits marginally ( p  = .lo), but we will retain the 
constraint. The next model equates the factor loadings for the three observed 
measures, setting the common value to unity. This constraint changes the 
measurement model to be essentially tau-equivalent within each occasion, and 
gives an adequate fit. Although the factor loadings are now equal and stationary, 
the common factor variance is not constrained to stationarity. The next model 
attempts to equate all intercepts to zero. This constraint worsens the fit of the 
model, and is not retained. Finally, the latent mean is constrained to be stationary, 
implying no true growth across occasions. This constraint also worsens the fit of 

Table 6 
Test statistics for models in the PMA data 

--- 
Model X' x2 Diff Diff df - df - 
Baseline 1.48 5 
Stationary Loadings 1.69 7 .21 2 
Stationary Intercepts 6.32 9 4.63 2 
Equal Loadings 8.74 11 2.42 2 
Null Intercepts 142.84 13 134.310 2 
Stationary Means 73.30 12 64.56 1 
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the model. We conclude that while the factor loadings and intercepts are 
stationary, the latent mean changes across occasions. At the first occasion, this 
mean is estimated as 8.182 and at the second occasion the estimate is 10.244. 

Discussion 

We have described the use of CFA with nonzero latent means in 
evaluating six measurement models derived from classical test theory. The 
relationships among the six models, and their implications for observed moment 
structures, have also been described. Three examples of the use of the models in 
real data were presented, but additional applications exist. For example, in 
multivariate experimental or quasi-experimental research, any of these models 
could be embedded within a larger structural model to reveal treatment effects. 
Sorbom (1978, 1982) has described the use of latent means in the analysis of 
covariance as applied in experimental or quasi-experimental designs. In this 
application, separate measurement models are specified for the covariates and the 
dependent measures. Several advantages accrue from the use of explicit 
measurement models in this analysis. Possible biasing effects due to fallible 
covariates (Cochran, 1968; Lord, 1960) are removed or minimized, and the power 
to detect treatment effects can be increased through the removal of measurement 
error in the dependent measures. In some applied problems, the influence of the 
experimental manipulation on the psychometric properties of the dependent 
measures may be of interest. Millsap and Hartog (1988) used a latent means 
analysis to detect change in the psychometric properties of observed measures in 
the nonequivalent control group design and to link this change to the manipulation. 
In other applications, the latent means analysis can reveal group differences in the 
psychometricpropertiesof the measuredvariables that exist prior to any intervention. 
These group differences can bias the results of group comparisons (Bejar, 1980). 

The measurement models described earlier make no distributional assumptions 
concerning true, error, or observed scores. Ideally, estimation and testing under 
these models should employ procedures that do not require such assumptions. 
Maximum likelihood estimation procedures do require assumptions about the 
population distribution of the observed variables, or alternatively, about the 
distributions of the common and unique factor variables. Either the common and 
unique factor variables are assumed to have multivariate normal distributions, 
implying normality of the observed variables, or multivariate normality for the 
observed variables is directly assumed (Anderson & Rubin, 1956; Joreskog, 1967; 
Lawley & Maxwell, 1971). Because these distributional assumptions are not 
really part of the measurement models themselves, maximum likelihood procedures 
are not ideal in the above sense. In nonnormal data, maximum likelihood 
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procedures can provide fairly accurate parameter estimates in CFA, but may not 
give accurate standard errors or test statistics (Boomsma, 1983). 

In large samples, generalized least squares estimators have nearly the same 
properties as maximum likelihood estimators, but donot require strong distributional 
assumptions (Browne, 1974; Joreskog & Goldberger, 1972). Generalized least 
squares estimation is currently available as an option in LISREL. Recent research 
on asymptotically efficient estimation in structural equation models (Bentler, 
1983; Browne, 1982,1984) may lead to practical procedures that give accurate 
estimates and standard errors with minimal distributional assumptions. Some of 
these methods are incorporated in the latest version of LISREL (Joreskog & 
Sorbom, 1987), in the LISCOMP program WuthCn, 1987), and in the EQS 
program (Bentler, 1985). These new procedures may allow efficient estimation 
and testing of measurement models in large samples without the need for extra 
distributional assumptions. 

The extension of traditional CFA to allow nonzero latent means provides a 
flexible and powerful tool for theverification of classical measurement assumptions. 
But the choice of an appropriate measurement model should be based on 
substantive considerations in addition to the results of statistical tests. The content 
of the observed measures may suggest a preliminary choice, which can then be 
tested and modified if necessary. In other cases, the choice of the measurement 
model will follow from the hypothesized relationships among the variables under 
study or from the design of the data collection. The number of statistical tests of 
fit should be kept to a minimum. Confirmatory statistical analyses should be used 
to support, rather than dictate, the choice of a measurement model. 
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