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Introduction

The purpose of this course is to provide statistical theory and methods to analyse
data which are organized in the form of pairs

(y1, x1), . . . , (yi , xi ), . . . , (yn, xn)

where, in general, xi = (xi1, . . . , xij , . . . , xiJ) can be J-dimensional.

The aim is to infer a stochastic function which relates yi to xi through a
statistical model

yi = f (xi ) + �i

where the noise term �i is assumed to be additive.
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Introduction

Throughout the course, yi will be called response variable whereas, depending
on the context, xi1, . . . , xiJ will be called independent variables (e.g., experimen-
tal settings) or simply covariates (e.g., social studies). In general, xi1, . . . , xiJ
are used as predictors of the responses yi (asymmetric relation).

In this context, xi1, . . . , xiJ are considered non stochastic whereas yi are thought
as being random realizations from a random variable Yi (only the response vari-
ables embed the stochasticity of the data collection process).
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Introduction

Depending on the context, the predictors xi1, . . . , xiJ can be continuous (i.e.,
xi ∈ RJ) or categorical (i.e., xi ∈ C ⊂ NJ). In the last case, the elements of
C = {c1, . . . , ck} represent the levels that xi may assume. For instance, if k = 2
the predictor is a dichotomous variable, otherwise when k > 2 the predictor is a
polithomous variable.

The same applies for the response observations yi . We may have continuous
(i.e., yi ∈ R) or positive continuous responses (i.e., yi ∈ R+) as well as categor-
ical responses (i.e., yi ∈ C ⊂ N) in the simplest form of unordered categorical
responses or ordered categorical responses (i.e., . . . < ck−1 < ck < ck+1 < . . .).
In some circumstances, observations can be also collected in the form of counts
(i.e., yi ∈ N0) or frequencies (i.e., yi ∈ [0, 1]).
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Introduction

As the stochasticity is embedded into yi , the type of observation (e.g., con-
tinuous, categorical, counts) implies different random variable model Yi . For
instance, continuous responses may be modeled using a Normal random variable
Yi ∼ N (y ;µi ,σ

2), dichotomous responses may be modeled using a Bernoulli
random variable Yi ∼ Ber(πi ), counts may be modeled using a Poisson random
variable Yi ∼ Poi(y ;λi ).

In order to infer the proper statistical model for a given response variable, we use
generalized linear models (GLMs) which is a class of statistical models including
many probabilistic models (e.g., Normal, Poisson, Gamma) for different response
variables (e.g., continuous, counts, response times).
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Introduction

Response variable and covariates can be organized by means of a n × (J + 1)
matrix representation where n is the number of collected/sampled statistical
units.

Y X1 . . . XJ

1 y1 x11 . . . x1J
...

...
...

...
...

i yi xi1 . . . xiJ
...

...
...

...
...

n yn xn1 . . . xnJ

Notes:

We are interested in studying Yi conditioned on xi (asymmetric relation)

For non-grouped data (most of the first part of the course),
the number of statistical units n equals the number of observations
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Introduction
Example 1

Subset of n = 10 data referring to the study of Physical well-being (phys wb)
as a function of Emotional well-being (emo wb) and gender.
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phys wb gender emo wb
1 4.64 1 1.20
2 6.17 1 1.84
3 7.28 1 2.52
4 6.21 1 1.53
5 7.83 1 2.20
6 5.77 2 1.80
7 6.50 2 1.72
8 6.93 2 1.13
9 8.30 2 1.96
10 8.41 2 1.90
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Introduction
Example 2

Subset of n = 15 data referring to the study of response times (in sec) to a math
test (RT) as a function of math anxiety (math anx) and test difficulty diff.
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RT math anx diff
1 0.96 1.53 1.04
2 4.08 1.81 1.21
3 3.98 3.11 1.38
4 4.56 3.16 1.86
5 4.70 3.88 1.96
6 5.82 4.03 2.50
7 6.10 4.22 3.12
8 4.44 4.38 3.61
9 6.47 4.42 3.87
10 5.26 4.59 4.03
11 5.53 4.85 4.18
12 7.47 5.00 4.27
13 6.84 5.79 4.28
14 8.85 7.07 4.31
15 12.79 8.65 4.43
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Introduction
Example 3

Subset of n = 150 data referring to the study of math anxiety to a math test
(math anx) as a function of three types of test (test).

A B C

0
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math anx test
1 2.38 2
2 5.00 2
3 4.47 2
4 1.95 3
5 5.61 2
6 3.44 2
7 4.01 2
8 5.64 2
9 0.56 1
10 1.35 1
11 2.88 1
12 2.56 1
13 3.27 2
14 2.30 1
15 2.91 2
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Introduction
Example 4

Subset of n = 12 data referring to the number of errors in an experimental task
(err) as a function of response times (RT).
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RT
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err RT
1 11 1.63
2 0 1.06
3 0 0.75
4 4 1.76
5 3 1.09
6 7 1.56
7 1 1.07
8 2 0.91
9 0 0.78
10 2 0.73
11 3 0.80
12 1 1.51
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Introduction
Notation

Throughout the course, uppercase Roman letters will denote both the random
variables underlying the response variable Y1, . . . ,Yi , . . . ,Yn and the explanatory
variables Xi1, . . . ,XiJ . Instead, lowercase Roman letters will denote either the
random realizations associated to the response variable y = (y1, . . . , yi , . . . , yn)
or the observed values for the predictors xj = (x1, . . . , xi , . . . , xn).

Boldface Roman letters will denote matrices (e.g., X) as well as column vectors
(e.g., y), with dimensions in subscript (e.g., Xn×J , yn×1). Sometimes dimensions
may be omitted to simplify notation.

Model parameters will be denoted by Greek letters (e.g, θ). As for the Roman
case, boldface Greek symbols will indicate matrices or vectors of model parame-
ters (e.g., θ, θq×1).
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Introduction
Notation

The starting point of statistical modeling is the sample of observations y =
(y1, . . . , yn) which is a random realization of a set of random variables (random
vector) Y1, . . . ,Yn. Most often, Y1, . . . ,Yn are considered independent with
identical distribution (iid) so that y is the outcome of a Bernoulli sampling
schema.

The usual notation is then adopted to indicate the probabilistic model for a
random variable Yi ∼ F(y ;θ) with F being a proper statistical distribution
parameterized by θ. With a slight abuse of notation, the same will also be
denoted by y ∼ F (y ;θ).
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Introduction
Defining a statistical model

For a correct statistical model specification we will need to evaluate:

1 the probabilistic model F (aka, probabilistic distribution) underlying the
response variable Y

2 the characteristics of F (e.g., expected value, variance, covariance) to be
associated with the explanatory variables X through a parametric
specification
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Introduction
Defining a statistical model

For instance, in Example 1 the response phys wb may be modeled using the

Normal distribution F def
= N with parameters θ = {µ,σ2} ∈ R× R+, i.e.:

yi ∼ N (y ;µi ,σ
2)

with the explanatory variables emo wb (x1) and gender (x2) being associated to
the mean of the model (systematic variation):

µi = E [Yi ] = β0 + x1β1 + x2β2

The variance of the model σ2 can be defined either as a function of the data
(first part of the course) or as a function of the mean and, consequently, as a
function of the explanatory variables (second part of the course).
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Introduction
Defining a statistical model

Similarly, in Example 4 the response err may be modeled using the Poisson

distribution F def
= Poi with parameters θ = λ ∈ R+, i.e.:

yi ∼ Poi(y ;λi )

with the explanatory variable RT (x) being associated to the mean of the model:

λi = E [Yi ] = exp (β0 + xβ)

In this particular case, the variance equals the mean, which is in turn a function
of RT:

Var [Yi ] = λi

This is common in GLMs.
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Introduction

..we will return to these topics (more in depth) at the beginning of module B.

In the first part of the course we will focus on the cases where:

F def
= N with yi ∼ N (y ;µi ,σ

2)

µi = xTJ×1βJ×1

σ2 |= µi for i = 1, . . . , n (mean and variance of the model are
independent)

In the first place, we will review basics of probability theory and random variables.

For a review of linear algebra, see Appendix B.1 (Fox, 2016) in the supplementary
materials of the course.
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Random experiments
Source: Appendix D.1.1 (Fox, 2016) - supplementary materials

A random experiment is an experiment whose outcomes cannot be determined
in advance. Whereas the set of all possible outcomes (sample space Ω) can
distinctly be determined (there is no fuzziness in this step), what is affected by
uncertainty is the occurrence of an event of the sample space.

The most typical example is the experiment where a (fair) coin is tossed a number
of times (e.g., three times). In this case,

Ω = {HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT}

where THT means that the first toss is tail, the second is head, and the the
third is tail.
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Random experiments
Source: Appendix D.1.1 (Fox, 2016) - supplementary materials

Subsets A1, . . . ,AK of Ω are called events. For instance, the event that the first
toss is tail is A = {THH,THT ,TTH,TTT}. An event A is said to occur if an
element a ∈ A (e.g., a = {THH}) is the outcome of the experiment.

Since events are sets, we can use the standard set operations to perform com-
putation on random events.

Given two events Ak , Ah (k �= h):

Ak ∪ Ah (union: the event that A or B or both occur)

Ak ∩ Ah (intersection: the event that A and B both occur)

Ac (complement: the event that A does not occur)

Ak ∩ Ah = ∅ (disjoint event)
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Random experiments
Source: Appendix D.1.1 (Fox, 2016) - supplementary materials

The probability P of an event A is a measure such that

P1 P(Ak) ∈ [0, 1]

P2 P(
�K

k=1 Ak) =
�K

k=1 P(Ak) = 1

P1 states that P(Ak) = 0 indicates that Ak does not occur certainly whereas P2
gives a calculus for the total probability of disjoint events.
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Random experiments
Source: Appendix D.1.1 (Fox, 2016) - supplementary materials

There are two ways to assign probability at least:

classic: the probability of A is given by computing the elementary events
which have been occurred during an experiment

P(A) = |A|
|Ω|

frequentist: the probability of A is given as the limiting frequency after a
sequence of n independent attempts

P(A) = lim
n→∞

fA
n

where fA is the empirical frequency for the event A
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Random experiments
Source: Appendix D.1.1 (Fox, 2016) - supplementary materials

It should be noted that the classic approach to computing probabilities is per-
formed before the random experiment is done whereas the frequentist (or em-
pirical) approach is performed after the experiment is done and it requires that
the experiment can be repeated infinitely many times.

For example, the probability of the event A = {THH,THT ,TTH,TTT} is

P(A) = |A| / |Ω| = 4/23 = 1/2

according to the classic approach to probability.
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Random experiments
Source: Appendix D.1.1 (Fox, 2016) - supplementary materials

Consider two events Ak and Ah (k �= h). Then, by fixing one of the two terms
(e.g., Ah) we may ask whether knowing Ah changes the probability of Ak :

P(Ak |Ah) =
P(Ak ∩ Ah)

P(Ah)

This is known as conditional probability. When P(Ak∩Ah) = ∅ then P(Ak |Ah) =
P(Ak) and knowing P(Ah) does not affect the probability of P(Ak).

For instance, suppose we toss a fair coin three times. Let Ah be the event that
the total number of heads is two and let Ak be the event that the first toss is
heads. Then P(Ak |Ah) = (2/8)/(3/8) = 2/3 = 0.67.

Antonio Calcagǹı University of Padova

PSQ1096299 - First Part (module A) Preliminaries 25/64

Random experiments
Source: Appendix D.1.1 (Fox, 2016) - supplementary materials

The conditional probability also provides a calculus for the joint probability of
Ak ∩ Ah:

P(Ak ∩ Ah) = P(Ak |Ah)P(Ah)

which can be generalized for a sequence of events:

P(A1∩. . .∩AK ) = P(A2|A1)P(A1) · · ·P(Ak |Ak−1∩. . .∩A1) · · ·P(AK |AK−1∩. . .∩A1)

Two events Ak and Ah (k �= h) are said to be independent when P(Ak |Ah) =
P(Ak) or P(Ak∩Ah) = P(Ak)P(Ah). Independence models the lack of information
between events and it is often a model assumption.

In the general case of independence:

P(A1 ∩ . . . ∩ AK ) = P(A1) · · ·P(Ak) · · ·P(AK )
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

Very often defining probability spaces for some interesting empirical phenomena
is difficult. Sometimes it is also unnecessary as we are only interested in par-
ticular outcomes of the random experiment. To this end, random variables can
circumvent these issues by introducing parametric classes of probabilistic models.
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

Non-formal definition: A random variable X is a function that maps subsets of
the sample space Ω (or subsets of the event space A, the σ-algebra associated
to Ω) to real numbers.

The support of X - i.e. sup(X ) - is the set of values that X may assume. For
discrete random variables, sup(X ) is countable finite (e.g., discrete subset of real
numbers). For real random variables, sup(X ) is infinite.

Random variables can be univariate (e.g., sup(X ) ⊂ R), bivariate (e.g., sup(X ) ⊂
R× R), or more generally multivariate (e.g., sup(X ) ⊂ R× J−1. . . × R).

Note: the adjective random indicates that we are dealing with random experi-
ments (the function X is not random per-sé).
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

Example: Fair coin tossed n = 3 times

Ω = {ttt, ttc, tct, ctt, ccc , cct, ctc, tcc}, |Ω| = 2n

P defined according to the classic assignment: P(A) = |A|
|Ω|

X
def
= “number of heads”, sup(X ) = {0, 1, 2, 3}

X = 0 ⇐⇒ {ccc}
X = 1 ⇐⇒ {ctc , tcc, cct}
X = 2 ⇐⇒ {ttc, tct, ctt}
X = 3 ⇐⇒ {ttt}
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

Example: Fair coin tossed n = 3 times

Ω = {ttt, ttc, tct, ctt, ccc , cct, ctc, tcc}, |Ω| = 2n

P defined according to the classic assignment: P(A) = |A|
|Ω|

X
def
= “number of heads”, sup(X ) = {0, 1, 2, 3}

X = 0 ⇐⇒ {ccc} P(X = 0) = 1/8
X = 1 ⇐⇒ {ctc , tcc, cct} P(X = 1) = 3/8
X = 2 ⇐⇒ {ttc, tct, ctt} P(X = 2) = 3/8
X = 3 ⇐⇒ {ttt} P(X = 3) = 1/8

Note: sup(X ) can be considered the new sample space over which
P assigns probabilities.
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

The probabilities P(X = x) induced by a random variable give rise to the dis-
tribution function FX . Depending on if X is discrete or continuous, probability
distribution can be discrete or continuous too.

FX defines the way probabilities can be computed by means of random variables:

FX (X = x) = P(X ≤ x) x ∈ sup(X )

FX (X ∈ [a, b]) = P(a ≤ X ≤ b) x ∈ sup(X )

From FX we can derive continuous or discrete density functions fX (X = x) or
fX (X ∈ [a, b]). In general, fX (x) satisfies the axioms of probabilities:

fX (x ∈ [x0, x0 + �]) =
� x0+�

x0
fX (x) dx ≥ 0

�∞
−∞ fX (x) dx = 1
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials
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(A) Discrete density function (aka, probability mass function)
(B) Discrete distribution function (aka, cumulative probability mass function)

f (X = x) ≥ 0
�

x∈sup(X )

f (X = x) = 1
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials
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(A) Continuous density function
(B) Continuous distribution function (aka, cumulative density function)

f (x0 ≤ X ≤ x0 + �) =

� x0+�

x0

f (x)dx ≥ 0 (� > 0)

� +∞

−∞
f (x)dx = 1

f (x0) = 0
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

Random variables allows for using the same probabilistic models to represent
different random experiments.

For instance, the Binomial random model can be used to formalize the experi-
ments of drawing marbles from an urn or the experiment of purchasing a given
product from a finite set of choices. Similarly, the Normal random model can be
used to represent the measurement error of a physical as well as psychophysic
experiments.
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

The distribution function FX can be parameterized by some reals θ called pa-
rameters that modify the way it assigns probabilities. The mathematical domain
where the parameters lie is called parameter space.

In general X ∼ FX (x ;θ) is used to signify that X has distribution function FX

parameterized by θ.

The class of parameterized distribution functions will be called parametric prob-
abilistic models. Depending on the support of X we may then have discrete
parametric models as well as continuous parametric models.
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Random variables
Source: Appendix D.2 (Fox, 2016) - supplementary materials

Some univariate discrete probabilistic models

Model Notation sup(X ) θ fX

Bernoulli Ber(x ;π) {0, 1} π ∈ [0, 1] πx (1 − π)1−x

Binomial Bin(x ; n,π) N0 n ∈ N,
π ∈ [0, 1]

�
n
x

�
πx (1 − π)n−x

Poisson Poi(x ;λ) N0 λ ∈ R+ λx

x!
exp(−λ)

Geometric G(x ;π) N π ∈ [0, 1] π(1 − x)x−1

Multinomial Multi(x; n,π) N0 n ∈ N,
π = (π1, . . . ,πK ),

πT 1K = 1

�
n!

x1!···xK !

�
π
x1
1 · · ·πxK

K
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Random variables
Source: Appendix D.3 (Fox, 2016) - supplementary materials

Some univariate continuous probabilistic models

Model Notation sup(X ) θ fX

Normal N (x ;µ,σ2) R µ ∈ R,
σ ∈ R+

�
σ
√
2π

�−1
exp

�
− (x−µ)2

2σ

�

Uniform U(x ;α, β) [α, β] ⊂ R α ∈ R
β ∈ R
α < β

1
β−α

Exponential Exp(x ;λ) R+ λ ∈ R λ exp (−λx)

Beta Beta(x ;α, β) [0, 1] ⊂ R α ∈ R+,
β ∈ R+

Γ(α+β)
Γ(α)Γ(β)

xα−1(1 − x)β−1

Chi-square χ2(x ; ν) R+ ν ∈ N
�
2ν/2Γ(ν/2)

�−1
xν/2−1 exp(−x/2)
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

When using random variables it is useful to consider various characteristics (e.g.,
position, dispersion, shape) that can be summarized numerically.

Expectation. It is denoted by E [X ] and quantifies the mean value to which a
sequence of random experiments is expected to converge:

E [X ] =
�

x∈sup(X )

xfX (x) (discrete case)

E [X ] =

� ∞

−∞
xfX (x) dx (continuous case)
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

Variance. It is denoted by Var [X ] and quantifies the dispersion of the outcomes
of a sequence of random experiments:

Var [X ] =
�

x∈sup(X )

(x − E [X ])2fX (x) (discrete case)

Var [X ] =

� ∞

−∞
(x − E [X ])2fX (x) dx (continuous case)
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

For two (or more) random variables X1, . . . ,XJ an important characteristic to
be calculated is the covariance, which summarizes the joint variability of the
involved r.vs.

Given a pair Xh,Xk (h �= k), we have:

Cov [Xh,Xk ] = E [(Xh − µXh )(Xk − µXk )]

= E [XhXk ]− µXhµXk

where in general µX = E [X ]. The covariance offers a measure of linear associa-
tion between Xh and Xk . In particular:

Cov [Xh,Xk ] > 0 indicates that Xh and Xk are positively associated

Cov [Xh,Xk ] < 0 indicates that Xh and Xk are negatively associated

Cov [Xh,Xk ] = 0 indicates that Xh and Xk are not linearly associated
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

Expectations for some important distributions

Model Notation E [X ] Var [X ]

Bernoulli Ber(x ;π) π π(1 − π)

Binomial Bin(x ; n,π) nπ nπ(1 − π)

Poisson Poi(x ;λ) λ λ

Geometric G(x ;π) 1
π

1−π

π2

Multinomial Multi(x; n,π) nπ1, . . . ,
nπJ

nπ1(1 − π1), . . . ,
nπJ (1 − πJ )
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

Expectations for some important distributions

Model Notation E [X ] Var [X ]

Normal N (x ;µ,σ2) µ σ2

Uniform U(x ;α, β) 1
2
(α + β) 1

12
(β − α)2

Exponential Exp(x ;λ) 1
λ

1
λ2

Beta Beta(x ;α, β) α
α+β

αβ

(α+β)2(α+β+1)

Chi-square χ2(x ; ν) ν 2ν
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

Some important properties for expectations

E [α] = α

E [Xh + Xk ] = E [Xh ] + E [Xk ]

E [βXh ] = βE [Xh ]

E [α + βXh ] = α + βE [Xh ]

Var [α] = 0

Var [Xh + Xk ] = Var [Xh ] + Var [Xk ] + 2Cov [Xh, Xk ]

Var [βXh ] = β
2Var [Xh ]

Var [α + βXh ] = β
2Var [Xh ]
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

Often a random experiment is described by more than one random variable
(random vectors).

Given a random vector X = (X1, . . . ,XJ) the joint probability distribution is
defined as

FX1,...,XJ (X1 = x1, . . . ,XJ = xJ) = P(X1 ≤ x1, . . . ,XJ ≤ xJ)

The marginal probability distribution is obtained by integration (continuous
case) or summation (discrete case). For example, in the continuous case (J = 2):

fX1(x1) =

� ∞

−∞
fX1,X2(x1, x2) dx2
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

The conditional probability distribution is defined as follows (J = 2):

fX1|X2
(x1) =

fX1,X2(x1, x2)

fX2(x2)

If X1 |= X2 (independence), then:

fX1|X2
(x1) = fX1

or alternatively
fX1,X2(x1, x2) = fX1(x1) · fX2(x2)
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

In the multivariate context, conditional expectations can be obtained as well:

E [X1|X2 = x2] =

� ∞

−∞
x1 fX1|X2

(x1) dx1

Var [X1|X2 = x2] = E
�
(X1 − E [X1|X2])

2

����X2 = x2

�
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

Similarly to the univariate case, there are several parametric probabilistic models
for the multivariate case. For example, the most relevant model for the contin-
uous case is the multivariate Normal model y ∼ N (µ,Σ):

y ∼ N







µ1

...
µj

...
µJ



,




σ2
11 . . . σ1j . . . σ1J

...
. . .

...
. . .

...
σj1 . . . σ2

jj . . . σjJ

...
. . .

...
. . .

...
σJ1 . . . σJj . . . σ2

JJ







with µJ×1 being the vector of the means and ΣJ×J the covariance matrix.

For further details, see Appendix D.3.5 (Fox, 2016) in the supplementary
materials of the course.
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Random variables
Source: Appendix D.1.2 (Fox, 2016) - supplementary materials

Random variables X1, . . . ,XJ are said to be independent and identically dis-
tributed (iid) iff:

fX1,...,XJ (x1, . . . , xJ) = fX1(x1) · · · fXJ (xJ)

fX1 = fX2 = . . . = fXJ

Independent and identically distributed random variables constitute the building
block of simple random samples. Moreover, they are at the base of limit
theorems, which are important for statistical inference.
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(Weak) Law of Large Numbers
Source: Appendix D.4.1 (Fox, 2016) - supplementary materials

Let X1, . . . ,Xn be a sequence of iid random variables with E [Xi ] = µ and
Var [Xi ] = σ2 for each term of the sequence and let

X =
1

n

�

i

Xi

be the mean of the random sequence. Then given any positive number � (no
matter how small) we have:

lim
n→∞

P(µ− � < X n < µ+ �) = 1

In other words, the random variable X is close to µ for large n.

Antonio Calcagǹı University of Padova

PSQ1096299 - First Part (module A) Preliminaries 48/64

(Weak) law of large numbers
Source: Appendix D.4.1 (Fox, 2016) - supplementary materials

n = 10

4 5 6 7 8 9 10

0
.0

0
.2

n = 50

4.5 5.5 6.5 7.5

0
.0

0
.3

0
.6

n = 100

5.5 6.0 6.5 7.0 7.5

0
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0
.4

0
.8

1
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n = 250
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0
.0

1
.0

Notes:

Xi ∼ χ2(n,λ = 6.5), n = (10, 50, 100, 250). Dotted red lines indicate the set I�,λ = [λ ± �], � = 0.3.
As n increases, I�,λ gets larger:

P(Xn=10 ∈ I�,λ) = 0.218, P(Xn=50 ∈ I�,λ) = 0.422, P(Xn=100 ∈ I�,λ) = 0.586,

P(Xn=250 ∈ I�,λ) = 0.814

Antonio Calcagǹı University of Padova

PSQ1096299 - First Part (module A) Preliminaries 49/64

Central limit theorem
Source: Appendix D.4.3 (Fox, 2016) - supplementary materials

Let X1, . . . ,Xn be a sequence of iid random variables with E [Xi ] = µ and
Var [Xi ] = σ2 for each term of the sequence and let

Zn =
X − µ

σ/
√
n

be the standardized random variable with E [Z ] = 0 e Var [Z ] = 1. Then for
x ∈ R we have:

lim
n→∞

P(Zn ≤ x) = P(Z ≤ x) with Z ∼ N (0, 1)

In other words, the random variable Zn has a distribution that is approximately
standardized Normal (no matter how X1, . . . ,Xn are distributed).
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Central limit theorem
Source: Appendix D.4.3 (Fox, 2016) - supplementary materials

n = 5
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Notes:
Xi ∼ Exp(n,λ = 1), n = (5, 10, 25, 100). Dotted red curves indicate the standardized Normal distribution.
As n increases, the distribution of Zn approximates the standardized Normal distribution.
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Statistical inference

A statistical model can generally be defined as a triplet

M = {FY (y ;θ),θ ∈ Θ ⊂ Rp, y ∈ Y}

where

FY (y ;θ) is a parametric probabilistic model

Θ is the parametric space for θ

Y is the sample space, i.e. the space where sup(Y ) is defined

Examples:

Normal model :
p = 2, θ = {µ,σ2} ∈ Θ ⊂ R× R+, Y ⊆ R, and FY (y ;θ) = N (y ;µ,σ2)

Bernoulli model :
p = 1, θ = π ∈ [0, 1], Y ⊆ {0, 1}, FY (y ;θ) = Bin(y ;π)

Antonio Calcagǹı University of Padova

PSQ1096299 - First Part (module A) Preliminaries 52/64

Statistical inference

In general, we have two ways for dealing with a statistical model M:

(i) Top-down approach: the observer knows in advance the elements of the
model - i.e. θ, Y , and FY (y ;θ) - with the purpose of simulating new
instances/samples {y1, . . . , yn} from M. For instance, this approach can
be used to assess the inner-working mechanisms of M.

(ii) Bottom-up approach: the observer has a set of instances/observations
y = {y1, . . . , yn} but nothing is known about M in advance. Then, the
purpose here is to infer the most plausible model M0 ∈ {M1, . . . ,MK}
which has generated the observed sample y.
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Statistical inference

Example

With the goal of determining the level of a cognitive ability µ0 in a non-clinical
population, a sample of observations yn×1 has been collected by means of a
cognitive test. From a statistical point-of-view, we need to determine which
of the models F (y ;µ1), . . . ,F (y ;µk), . . . ,F (y ;µK ) is the most plausible for µ0

given y.

By previous knowledge about µ, we can set Y = R and

F (y;µ) = N (y;µ,σ2 = 1)

Then, the goal becomes that of estimating µ0 ∈ R given y, which implies select-
ing the most plausible model from the set F (y;µ1), . . . ,F (y;µk), . . . ,F (y;µK ).

Note: N (y;µ,σ2 = 1) is a location model.
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Statistical inference

-4 -2 0 2 4

0
.0

0
.2

0
.4

M1 M2 M3 M4

Notes:

K = 4 plausible location models for the cognitive ability estimation.
The most plausible model given the data y is M3 (red dotted curve).
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Statistical inference

Determining M0 means making inference about the true but unknown parameter
µ0 ∈ R of the true model F 0(y ;θ). The procedure requires a theory of statistical
inference which establishes the correctness, the bias, and the uncertainty of the
estimates θ̂.

A couple of approaches are available to this end: frequentist, Bayesian, information-
theoretic based. Within the frequentist framework, the maximum likelihood
theory is the most studied and most commonly used approach to statistical in-
ference.

For a brief review of ML theory, see Appendix D.6 (Fox, 2016) in the supple-
mentary materials of the course.
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Statistical inference
Source: Appendix D.5 (Fox, 2016) - supplementary materials

A function of the data t(y) is called statistic and, under some regularities,
it summarizes the data information in the most optimal way. For example, the
sample mean y = 1

n

�
i yi is a statistic of the sample y. As a statistic is computed

over samples, which are in turn outcomes of r.vs., itself is a random variable
T (Y ) with an own distribution as well. For example, the statistic Y =

�
i Yi is

a random variable following the Normal distribution.
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Statistical inference
Source: Appendix D.5 (Fox, 2016) - supplementary materials

Estimators θ̂(Y ) are statistics of the data and their outcomes θ̂(y) or simply θ̂
are called estimates. For instance, in the location model N (y ;µ) the estimator
for the parameter µ is µ̂ = 1

n

�
i yi . The probability distribution of θ̂(Y ) is called

sampling distribution and provides information about θ̂. The variance of an

estimator Var
�
θ̂
�
(or σ2

θ̂
) provides important information about the uncertainty

of the estimates θ̂.
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Statistical inference
Source: Appendix D.5 (Fox, 2016) - supplementary materials

An estimator θ̂(Y ) for the parameter θ0 is:

ubiased iff
B(θ̂) = E

�
θ̂
�
− θ0 = 0

This means that its average value over repeated samples is equal to the
parameter being estimated
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Statistical inference
Source: Appendix D.5 (Fox, 2016) - supplementary materials

An estimator θ̂(Y ) for the parameter θ0 is:

efficient iff its Mean Square Error (MSE)

E
��

θ̂(Y )− θ0
�2

�
= Var

�
θ̂
�
+ B(θ̂)2

is as lower as possible.
For unbiased estimators, the efficiency of an estimator increases,

therefore, as its sampling variance Var
�
θ̂
�
declines.
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Statistical inference
Source: Appendix D.5 (Fox, 2016) - supplementary materials

An estimator θ̂(Y ) for the parameter θ0 is:

consistent if the bias and the sampling variance approach zero as n
increases.
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Statistical inference
Source: Appendix D.5 (Fox, 2016) - supplementary materials

Example

Consider a random sample Y1, . . . ,Yn from a probabilistic model with parameters
E [Yi ] = µ and Var [Yi ] = σ2.

Then, two estimators for µ are the following

θ̂1 =
1

n

n�

i=1

Yi and θ̂2 = Y1
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Statistical inference
Source: Appendix D.5 (Fox, 2016) - supplementary materials

Example

Both estimators are unbiased:

B
�
θ̂1

�
= E


 1

n

n�

i=1

Yi


 − µ

=
1

n

n�

i=1

E [Yi ] − µ

=
1

n
nµ − µ = 0

B
�
θ̂2

�
= E [Y1] − µ

= µ − µ = 0
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Statistical inference
Source: Appendix D.5 (Fox, 2016) - supplementary materials

Example

However, the second estimator is not as good as the first one:

MSE
�
θ̂1

�
= Var


 1

n

n�

i=1

Yi


 + B


 1

n

n�

i=1

Yi




2

=
1

n2
Var




n�

i=1

Yi


 + 0

=
1

n2
nσ2 + 0 =

σ2

n

MSE
�
θ̂2

�
= Var [Y1] + B (Y1)

2

= σ
2 + 0 = σ

2

As MSE
�
θ̂1

�
< MSE

�
θ̂2

�
, the estimator θ̂1 should be preferred over θ̂2.
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Statistical inference
Source: Appendix D.5 (Fox, 2016) - supplementary materials
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Notes:

Sampling distributions for two estimators (dotted red line indicates the true parameter).
(A) - Biased estimators with same variance; (B) - Unbiased estimators with different variance;
(C) - Biased estimator (t1) vs. unbiased estimator (t2) with different variance.
Although t2 is unbiased, t1 would be preferred if bias could be removed.
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Statistical inference

There are several ways to build estimators for unknown parameters θ, e.g.:

Method of moments

Least squares method

Maximum likelihood

Bayesian approach

Monte Carlo based methods

Information-theoretic based methods

We will see some of them (more in depth) in Module B.
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Statistical inference

Example

Reconsider the location model used to estimate the cognitive ability µ0 given the
random sample yn×1:

yi ∼ N (yi ;µ,σ
2 = 1)

Then, we can extend the model to analyse whether the cognitive ability varies as
a function of the categorical variable gender z ∈ {0, 1}n, which has the following
levels zi = 0 (male) and zi = 1 (female).

This requires rewriting the mean of the model as a function of the new variable:

µi = β0 + ziβ1

The result is still a location model but now it codifies two means, one for the
male group when zi = 0 (µi = β0) and the other one for the female group zi = 1
(µi = β0 + β1).
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Statistical inference
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Notes:

Linear model for the cognitive ability µ0 as a function of gender.
In this example: n = 100 (nM = 50), β0 = 0.5, β1 = 2.6, µ̂M = 0.5, µ̂F = 3.1.

(A) Observed data y plotted as a function of z

(B) Estimated densities F̂Y (y; µ̂) plotted as a function of z.
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1 Normal linear model
Model specification
Parameter estimation
Goodness of fit
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Homoscedasticity
Correctly specifying the linear predictor
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4 An illustrative example
Competitive anxiety and HRV in swimmers
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Model definition
Source: 5.2.1, 5.2.2, 6.1.1, 6.2.1, 9.1.0 (Fox, 2016); 2.1, 2.2 (Faraway, 2014)

Let Y = (Y1, . . . ,Yi , . . . ,Yn) be a collection of independent random variables.
For each outcome yi , a set of (non-random) variables is collected

xi = (xi1, . . . , xij , . . . , xiJ)

so that the observed sample is represented in terms of pairs

y = {(y1, x1), . . . , (yi , xi ), . . . , (yn, xn)}

From now on xi is considered continuous without loss of generality. The statis-
tical theory underlying the Normal linear model is the same for both continuous
and categorical predictors.

We will discuss in more details the categorical case (e.g., dummy coding) later
on.
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Model definition
Source: 5.2.1, 5.2.2, 6.1.1, 6.2.1, 9.1.0 (Fox, 2016); 2.1, 2.2 (Faraway, 2014)

The Normal linear model for the sample y is of the form:

Yi ∼ N (µi ,σ
2
i )

µi = β0 + xTi β

σ2
i = σ2

where xi is a J × 1 vector of predictors, β0 ∈ R is the parameter for the offset
of the model, β ∈ RJ is a J × 1 vector of model coefficients, and σ2 ∈ R+ is
constant over the observations (homoscedasticity).

Unlike other models (e.g., Binomial, Poisson), this model codifies the mean of
the random variables as a function of the predictors E [Yi ] = µi whereas the
variance is kept constant and independent from the mean Var [Yi ] = σ2.
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Model definition
Source: 5.2.1, 5.2.2, 6.1.1, 6.2.1, 9.1.0 (Fox, 2016); 2.1, 2.2 (Faraway, 2014)

Yi ∼ N (µi ,σ
2
i )

µi = β0 + xTi β

σ2
i = σ2

The parameters of the model θ = {β0,β,σ
2} can be interpreted as follows:

β0 is the intercept term, i.e. E [Yi ] when β = 0J

β > 0J : the regression line or (multidimensional) regression plane
increases as a function of the predictors

β < 0J : the regression line or (multidimensional) regression plane
decreases as a function of the predictors
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Model definition
Source: 5.2.1, 5.2.2, 6.1.1, 6.2.1, 9.1.0 (Fox, 2016); 2.1, 2.2 (Faraway, 2014)

Yi ∼ N (µi ,σ
2
i )

µi = β0 + xTi β

σ2
i = σ2

The parameters of the model θ = {β0,β,σ
2} can be interpreted as follows:

β = 0J : location model, i.e. yi ∼ N (β0,σ
2)

σ2: constant variance across observations and each level of the predictors
(homogeneity of the variance)
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Model definition
Source: 5.2.1, 5.2.2, 6.1.1, 6.2.1, 9.1.0 (Fox, 2016); 2.1, 2.2 (Faraway, 2014)

Yi ∼ N (µi ,σ
2
i )

µi = β0 + xTi β

σ2
i = σ2

The parameters of the model θ = {β0,β,σ
2} can be interpreted as follows:

the single coefficient βj codifies the partial effect of the j-th predictor on
the response variable Yi when the remaining β−j are fixed
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Model definition
Source: 5.2.1, 5.2.2, 6.1.1, 6.2.1, 9.1.0 (Fox, 2016); 2.1, 2.2 (Faraway, 2014)

Yi ∼ N (µi ,σ
2
i )

µi = β0 + xTi β

σ2
i = σ2

The following assumptions follow from the model definition:

linearity : E [Yi ] is a linear function of xi (i.e., E [Yi ] = g(xTi β) with g(.)
identity function)

homoscedasticity : σ2
i = σ2, i.e. constant variance for all the observations

normality : the conditional distribution of the response variable Yi |xi is
Normal
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Model definition
Source: 5.2.1, 5.2.2, 6.1.1, 6.2.1, 9.1.0 (Fox, 2016); 2.1, 2.2 (Faraway, 2014)

Yi ∼ N (µi ,σ
2
i )

µi = β0 + xTi β

σ2
i = σ2

The following assumptions follow from the model definition:

independence: the random variables underlying the responses are
independent Yi |= Yh (i �= h). Moreover, they are also identically
distributed

non-random predictors: the explanatory variables X1, . . . ,XJ are fixed and
measured without error

absence of collinearity : no predictor is a perfect linear function of the
others
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Model definition
Source: 5.2.1, 5.2.2, 6.1.1, 6.2.1, 9.1.0 (Fox, 2016); 2.1, 2.2 (Faraway, 2014)

The (multidimensional) Normal linear model can also be represented more com-
pactly using the matrix notation:

yn×1 ∼ N (Xn×JβJ×1, In×nσ
2)




y1
...
yi
...
yn




� �� �
y

∼ N







1 . . . x11 . . . x1j . . . x1J
...

...
...

...
1 . . . xi1 . . . xij . . . xiJ
...

...
...

...
1 . . . xn1 . . . xnj . . . xnJ







β0

...
βj

...
βJ




� �� �
µ=Xβ

,




1 . . . . . .
...

...
. . . 1 . . .
...

...
. . . . . . 1



σ2

� �� �
Σ=Iσ2



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Parameter estimation
Source: 5.2.1, 5.2.2, 9.3.3 (Fox, 2016); 2.4, 2.5 (Faraway, 2014)

After the Normal linear model has been formulated, given an observed sample
of data y the goal is to estimate the parameters θ = {β0,β,σ

2} which identify
a linear model M̂ from the set of possible linear models indexed by θ.

Once M̂ has been found, the estimates θ̂ can be used to evaluate the model
and interpret the results.

The parameters can be estimated via the theory of Maximum Likelihood. For
general details, see Appendix D.6 (Fox, 2016) in the supplementary materials of
the course.
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Parameter estimation
Source: 5.2.1, 5.2.2, 9.3.3 (Fox, 2016); 2.4, 2.5 (Faraway, 2014)

The log-Likelihood function of the Normal linear model y ∼ N (Xβ, Iσ2) is as
follows:

lnL(θ; y) = −n

2
lnσ2 − 1

2σ2

n�

i=1

�
yi − xTi β

�2

= −n

2
lnσ2 − 1

2σ2
(y − Xβ)T (y − Xβ)

The problem of estimate θ = {β,σ2} is solved by maximizing lnL(θ; y) w.r.t.
the unknown quantities:

θ̂ = argmax
θ∈Θ

lnL(θ; y)
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Parameter estimation
Source: 5.2.1, 5.2.2, 9.3.3 (Fox, 2016); 2.4, 2.5 (Faraway, 2014)

θ̂ = argmax
θ∈Θ

lnL(θ; y)

With regards to β we get:

∂

∂β
lnL(θ; y) = 0J

∂

∂β

�
−n

2
lnσ2 − 1

2σ2
(y − Xβ)T (y − Xβ)

�
= 0J

∂

∂β
(y − Xβ)T (y − Xβ) = 0J

2yTX+ 2βTXTX = 0J

(XTX) = XTy Normal equations

β̂ = (XTX)−1XTy The solution exists providing that (XTX)−1 exists.
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Parameter estimation
Source: 5.2.1, 5.2.2, 9.3.3 (Fox, 2016); 2.4, 2.5 (Faraway, 2014)

θ̂ = argmax
θ∈Θ

lnL(θ; y)

With regards to σ2 we get:

∂

∂σ2
lnL(θ; y) = 0

∂

∂σ2

�
−n

2
lnσ2 − 1

2σ2
(y − Xβ)T (y − Xβ)

�
= 0

− n

2σ2
+

1

2σ4
(y − Xβ)T (y − Xβ) = 0

− n +
1

σ2
(y − Xβ)T (y − Xβ) = 0

σ̂2 =
1

n
(y − Xβ)T (y − Xβ)
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Parameter estimation
Source: 5.2.1, 5.2.2, 9.3.3 (Fox, 2016); 2.4, 2.5 (Faraway, 2014)

θ̂ = argmax
θ∈Θ

lnL(θ; y)

Finally, the (nested) solutions are:

β̂ = (XTX)−1XTy

σ̂2 =
1

n

�
y − Xβ̂

�T �
y − Xβ̂

�

Note: The point θ̂ = {β̂, σ̂2} is a maximum for lnL(θ; y) since
∂2

∂ββT lnL(θ; y) ≥ 0J and ∂2

∂σ2 lnL(θ; y) < 0.
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Parameter estimation
Source: 5.2.1, 5.2.2, 9.3.3 (Fox, 2016); 2.4, 2.5 (Faraway, 2014)

In the simplest case of a single predictor (J = 1), the Normal linear model
simplifies to

y ∼ N (β0 + xβ, 1nσ
2)

and the estimators simplify as well (see Table 9.1, Fox 2016):

β̂ =

�n
i=1(xi − x)(yi − y)�n

i=1(xi − x)2
=

cov (x, y)

var (x)

β̂0 = y − x β̂

σ̂2 =
1

n

n�

i=1

(yi − β̂0 − xi β̂)
2
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Parameter estimation
Source: 9.3.1 (Fox, 2016); 2.8 (Faraway, 2014)

The estimator β̂ has the following properties:

E
�
β̂
�
= (XTX)−1XTE [y]

= (XTX)−1XT (Xβ)

= ✭✭✭✭✭✭✭
(XTX)−1(XTX)β (unbiasness)

Var
�
β̂
�
= (XTX)−1XTVar [y] ((XTX)−1XT )T

= (XTX)−1XT (Iσ2)((XTX)−1XT )T

= σ2(XTX)−1
✭✭✭✭✭✭
XTX(XTX)−1

= (XTX)−1σ2
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Parameter estimation
Source: 9.3.2 (Fox, 2016); 2.8 (Faraway, 2014)

From the Gauss-Markov theorem we know that β̂ is BLUE (best linear unbiased
estimator), i.e. it is unbiased and show smaller variance among the set of all
possible linear estimators for β.

The distribution of β̂ can be used to make inference about the coefficients β.
It is obtained from the Normality assumption of the liner model:

β̂ ∼ N


 β����

E[β]

,σ2(XTX)−1

� �� �
Var[β]




The marginal distribution for a specific coefficient of the model is obtained by
taking the j-th element of the estimator: βj ∼ N

�
βr ,σ

2(XTX)−1
jj

�
.
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Example
Math anxiety and test difficulty

Let consider the Example 2 (module A) again. The data refers to a subset of
n = 15 data containing response times (in sec) to a math test (RT) as a function
of math anxiety (math anx) and test difficulty diff.

RT math anx diff
1 0.96 1.53 1.04
2 4.08 1.81 1.21
3 3.98 3.11 1.38
4 4.56 3.16 1.86
5 4.70 3.88 1.96
6 5.82 4.03 2.50
7 6.10 4.22 3.12
8 4.44 4.38 3.61
9 6.47 4.42 3.87
10 5.26 4.59 4.03
11 5.53 4.85 4.18
12 7.47 5.00 4.27
13 6.84 5.79 4.28
14 8.85 7.07 4.31
15 12.79 8.65 4.43
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Example
Math anxiety and test difficulty

The aim is to study whether response times varies as a (linear) function of both
math anxiety and test difficulty:

RTi = β0 + math anxβ1 + diffβ2 + �i

Under the common Normality assumption for the error component � ∼ N (0, 1nσ
2),

we get a Normal linear model

RTi ∼ N (β0 + math anxβ1 + diffβ2,σ
2)

More compactly:

y����
RT

∼ N ( X����
[1 math anx diff]

β����
[β0 β1 β2]

, Iσ2)

Antonio Calcagǹı University of Padova

PSQ1096299 - First Part (module B) Parameter estimation 18/88

Example
Math anxiety and test difficulty

In matrix form:




0.96
4.08
3.98
4.56
4.70
5.82
6.10
4.44
6.47
5.26
5.53
7.47
6.84
8.85
12.79




� �� �
y15×1

∼ N







1 1.53 1.04
1 1.81 1.21
1 3.11 1.38
1 3.16 1.86
1 3.88 1.96
1 4.03 2.50
1 4.22 3.12
1 4.38 3.61
1 4.42 3.87
1 4.59 4.03
1 4.85 4.18
1 5.00 4.27
1 5.79 4.28
1 7.07 4.31
1 8.65 4.43




� �� �
X15×(2+1)



β0
β1
β2




� �� �
β3×1

,




1 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 1 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 1




� �� �
I15×15

σ
2



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Example
Math anxiety and test difficulty

To estimate the parameters of the model we apply the solutions provided before
(see Slide 13).

For the linear coefficients β we have:

β̂ = (XTX)−1XTy

Then:

XTX =



15.00 66.49 46.05
66.49 341.02 231.41
46.05 231.41 164.21


 (XTX)−1 =




0.52209 −0.05584 −0.06772
−0.05584 0.07300 −0.08721
−0.06772 −0.08721 0.14798


 XT y =




87.85
452.24
304.06




β̂ =




0.52209 −0.05584 −0.06772
−0.05584 0.07300 −0.08721
−0.06772 −0.08721 0.14798






87.85
452.24
304.06


 =




0.0214
1.5899
−0.3949



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Example
Math anxiety and test difficulty

To estimate the parameters of the model we apply the solutions provided before
(see Slide 13).

For the variance of the model σ2 we have:

σ̂2 =
1

n
(y − Xβ̂)T (y − Xβ̂)

�
n

n − J − 1

�

Then:

σ̂
2 = 0.06667







0.96
4.08
3.98
4.56
4.70
5.82
6.10
4.44
6.47
5.26
5.53
7.47
6.84
8.85
12.79




−




2.043
2.421
4.421
4.311
5.416
5.442
5.499
5.560
5.521
5.728
6.082
6.285
7.537
9.560
12.025







T 





0.96
4.08
3.98
4.56
4.70
5.82
6.10
4.44
6.47
5.26
5.53
7.47
6.84
8.85
12.79




−




2.043
2.421
4.421
4.311
5.416
5.442
5.499
5.560
5.521
5.728
6.082
6.285
7.537
9.560
12.025







· 1.25 = 0.9048
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Example
Math anxiety and test difficulty

The estimated parameters are the following:

β̂ =




0.0214
1.5899

−0.3949


 σ̂2 = 0.9048

Parameter interpretation:

β̂0 = 0.0214: the mean of RT when the predictors are fixed at zero

β̂1 = 1.5899: as math anx increases by one unit,
RT also increases by 1.59 sec (by controlling for diff)

β̂2 = −0.3949: as diff increases by one unit,
RT decreases by 0.39 sec (by controlling for math anx)
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Example
Math anxiety and test difficulty

-1.0 0.0 1.0 2.0

-2
0

1
2

3
4

5

(A)

math.anx (fixed: diff)

y

-1.0 -0.5 0.0 0.5

-1
.0

0
.0

1
.0

(B)

diff (fixed: math.anx)

y

Partial regression plots: (A) RT as a function of math anx by fixing diff and (B) RT as a function of diff by
fixing math anx. Note that variables are plotted on residual scale. The plots have been produced using the method
described by:
Velleman, P. F., & Welsch, R. E. (1981). Efficient computing of regression diagnostics. The American
Statistician, 35(4), 234-242.
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Example
Math anxiety and test difficulty

m
at
h
an
x

diff

R
T

math anx
diff

R
T

Bivariate regression plot for two different perspectives.
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Example
Math anxiety and test difficulty

To evaluate the accuracy of the estimates β̂, standard errors can be computed
using the variance formula σ2

β̂
= (XTX)−1σ2 where XTX is the covariance matrix

of the predictors:

σβ̂ =
�

diag(XTX)−1σ̂2

=

��
0.52209 −0.05584 −0.06772
−0.05584 0.07300 −0.08721
−0.06772 −0.08721 0.14798

�
[0.9048] = [0.6873 0.2570 0.3659]

Next, standard errors can be used to compute statistics to make inference about
β̂ (e.g., t-statistic), to compute confidence intervals, and confidence bands for
the regression line. We will see all of them soon.
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Coefficient of determination R2

Source: 5.2.1, 5.2.4 (Fox, 2016); 2.9 (Faraway, 2014)

Once the model parameters have been estimates, one can ask whether the es-
timated linear model is good enough in predicting the observations y. More
precisely, one can evaluate to what extend the predicted values

ŷ = Xβ̂

resemble the observations y.

To this end, the coefficient of determination R2 can be used:

R2 = 1− (y − ŷ)T (y − ŷ)

(y − 1y)T (y − 1y)
=

residual sum of squares

total sum of squares

with y being the sample mean.

Note that R2 ∈ [0, 1], with R2 = 1 indicating a perfect fit for the model.
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Coefficient of determination R2

Source: 5.2.1, 5.2.4 (Fox, 2016); 2.9 (Faraway, 2014)

More generally, when J > 1 it can be useful to adjust the overall fit index R2 to
prevent the case where the index increases because of spurious predictors in the
model.

The most common adjustment (i.e., McNemar’s R2) is as follows:

R2
adj = 1− (1− R2) ·

�
n − 1

n − J − 1

�

� �� �
adjustment factor

In general
R2
adj ≤ R2

with R2
adj ∈ (−∞, 1] (the adjusted index can sometimes be negative).
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Coefficient of determination R2

Source: 5.2.1, 5.2.4 (Fox, 2016); 2.9 (Faraway, 2014)
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y
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(B)

x

y

R2 index for two Normal linear models: (A) Case with a lower overall fit index R2 = 0.25 and (B) case with a

higher overall fit index R2 = 0.76. In the first case, the fitted model explains about the 25% of overall variance.
By contrast, in the second case the fitted model explains a higher amount of overall variance (about 76%).
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Example
Math anxiety and test difficulty

Consider the math anxiety example again.
Here, the total sum of squares is

(y − 1y)T (y − 1y) = 97.18

whereas the residual sum of squares is

(y − ŷ)T (y − ŷ) = 10.86

The R2 index is then

R2 = 1− 10.86

97.18
= 0.888

As J = 2, we can adjust for the number of predictors. This yields to

R2
adj = 0.888

�
15− 1

15− 2− 1

�
= 0.869
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Testing individual coefficients
Source: 6.2.2 (Fox, 2016); 3.2, 3.5 (Faraway, 2014)

To test β̂J+1×1 element-wise, we use the statistic:

Tβ̂j
=

β̂j − β0

σβ̂j

with β0 being the value under the null hypothesis H0 = βj = β0 against the
test being performed.

From the distribution of the estimators {β̂, σ̂2}, we know that this statistic is
distributed according to a t-Student distribution with n−J degrees of freedom:

Tβ̂j

H0∼ t(; n − J − 1)
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Testing individual coefficients
Source: 6.2.2 (Fox, 2016); 3.2, 3.5 (Faraway, 2014)

To choose whether H0 has to be rejected for a fixed α, the observed statistic
tβ̂j

needs to be compared to the reference value t0n−J|1−α/2 of the t-Student

distribution for the test being computed.

For a symmetric test, H0 is rejected iif

|tβ̂j
| > t0n−J−1|1−α/2

or alternatively if

αobs = 2min
�
P(T 0

n−J−1|1−α/2 > tβ̂j
),P(T 0

n−J−1|1−α/2 < tβ̂j
)
�

is lower then a certain threshold (e.g., 0.05 or 0.001).

Note that αobs is usually called p-value.
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Example
Math anxiety and test difficulty

In the math anxiety example, we have

β̂ = [0.0214, 1.5899,−0.3949]T

σβ̂ = [0.6147, 0.2299, 0.3273]T

For α = 0.05 we can test whether H0 : β̂math anx = 0 against H1 : β̂math anx �= 0 .

Then, the reference quantile† for the current test is t015−3|1−0.05/2 = 2.18 and

tβ̂math anx
= 1.5899/0.2299 = 6.187

As 6.187 > 2.18 we can conclude that H0 is rejected for the current parameter.

†
Quantiles of t-Student distribution can be computed using the R function qt(1-α/2,n-J).
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Example
Math anxiety and test difficulty

In the math anxiety example, we have

β̂ = [0.0214, 1.5899,−0.3949]T

σβ̂ = [0.6147, 0.2299, 0.3273]T

For α = 0.05 we can test whether H0 : β̂math anx = 0 against H1 : β̂math anx �= 0 .

Alternatively, αobs = 2min
�
1, 2.328e−05

�†
= 4.656e−05

As 4.656e−05 is smaller then the usual predefined threshold (α0 = 0.05) then we
can conclude that H0 is rejected for the current parameter.

†
Probabilities for the t-Student distribution can be computed using the R function pt(t,n-J-1,1-α/2).
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Testing individual coefficients
Source: 6.2.2 (Fox, 2016); 3.2, 3.5 (Faraway, 2014)

Based on the pivotal quantity tβ̂j
we can also compute 1−α confidence intervals

(CIs) for a certain parameter β̂j . In this case, the symmetric interval such that

P(Tβ̂j
∈ [lbβ̂j

, ubβ̂j
]) = 1− α

is given by

β̂j ± t0n−J−1|1−α/2 · σβ̂j

where the bounds of the interval are as follows

lbβ̂j
= β̂j − t0n−J−1|1−α/2 · σβ̂j

ubβ̂j
= β̂j + t0n−J−1|1−α/2 · σβ̂j
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Example
Math anxiety and test difficulty

In the math anxiety example, the 1−0.05 CIs for βmathanx = 1.5899 is as follows:

lbβmathanx = 1.5899− t012|1−0.05/2 · 0.2299 = 1.095

ubβmathanx = 1.5899 + t012|1−0.05/2 · 0.2299 = 2.085

As the interval does not contain zero, the null hypothesis H0 : β̂mathanx = 0 can
be rejected at the 5% level.

Moreover, the CI is relatively wide in the sense that the upper bound is larger
than the lower bound: We are not really confident about what the exact effect
of math anx is, even though the p-value for the current parameter is smaller
then the predefined threshold.
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Testing all the coefficients
Source: 6.2.2 (Fox, 2016); 3.2, 3.5 (Faraway, 2014)

Testing the null hypothesis

H0 : β̂J+1×1 = 0J+1×1

where all the regression coefficients are all zero simultaneously (omnibus test)
can be performed by computing the analysis of variance table for nested mod-
els.
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Testing all the coefficients
Source: 6.2.2 (Fox, 2016); 3.2, 3.5 (Faraway, 2014)

In practice, two submodels are defined

M0 : y ∼ N (1nβ0, Iσ
2
0) null model

M1 : y ∼ N (1nβ0 + Xβ1, Iσ
2
1) full model

with M0 containing the intercept coefficient only (null model).
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Testing all the coefficients
Source: 6.2.2 (Fox, 2016); 3.2, 3.5 (Faraway, 2014)

Then, under the constrain M0 ⊂ M1, the likelihood-ratio statistic

WJ = 2
�
lnL1(β̂1, σ̂

2
1 ; y)− lnL0(β̂0, σ̂

2
0 ; y)
�

= . . . after a little algebra we get

=
R2

1− R2

�
n − J − 1

J

�

is distributed according to a F -distribution with df1 = J and df2 = n − J − 1
degrees of freedom:

WJ
H0∼ F(; J, n − J − 1)

As usual, large values of WJ allows for rejecting H0.
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Testing all the coefficients
Source: 6.2.2 (Fox, 2016); 3.2, 3.5 (Faraway, 2014)

Note that rejecting H0 does not imply that all the predictors are still not needed
to explain the response variable. For instance, by adding or removing one of
them the result of the F -test may change. In this sense, the omnibus test can
be considered as a starting point for further improvements of the model being
tested.
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Example
Math anxiety and test difficulty

In the math anxiety example, we get:

M1 : RTi ∼ N (β0 + math anxβ1 + diffβ2,σ
2)

M0 : RTi ∼ N (β0,σ
2)

and

W =
0.883

1− 0.883

�
15− 3

2

�
= 47.70

Since the observed significance level (p-value) for W is αobs = 1.945e−06 is lower
then the predefined threshold (0.05), we reject H0 at the 5% level.
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Testing subsets of coefficients
Source: 6.2.2 (Fox, 2016); 3.2, 3.5 (Faraway, 2014)

Likewise for the omnibus test, we can use the analysis of variance to test sub-
models with more then one predictor. In this case, the null model does not
simply contains the intercept coefficient:

M0 : y ∼ N (1nβ0 + Xβ◦, Iσ2
0) null model

M1 : y ∼ N (1nβ0 + Xβ†, Iσ2
1) full model

The term β◦ indicates a subset of coefficients (i.e., a subset of variables) different
by β†.
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Testing subsets of coefficients
Source: 6.2.2 (Fox, 2016); 3.2, 3.5 (Faraway, 2014)

To test
H0 : β

◦
Q×1 = 0Q×1

against

H1 : ∃βk ∈ β†
K×1 such that βk �= 0

since Q < K and M0 ⊂ M1, we can use the statistic

WJ = 2
�
lnL1(β̂1, σ̂

2
1 ; y)− lnL0(β̂0, σ̂

2
0 ; y)
�

= . . . after a little algebra we get

=
(e◦)T (e◦)− (e†)T (e†)

(e†)T (e†)

�
n − K − 1

K − Q

�

which is distributed according to the F -distribution:

WK−Q
H0∼ F(;K − Q, n − K − 1)
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Testing subsets of coefficients
Source: 6.2.2 (Fox, 2016); 3.2, 3.5 (Faraway, 2014)

Again, H0 is rejected for large values of WK−Q .

Note that the term e in the definition of WK−Q is the residual sum of squares,
which is defined as usual:

e◦ = y − Xβ̂◦

e† = y − Xβ̂†

The analysis of variance can also be used to test whether adding (or removing)
a single coefficient from a null (or full model) increases the overall fit of the
model being tested (incremental test). We will directly see this approach in the
practical sessions of the course.
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Example
Math anxiety and test difficulty

In the math anxiety example, we get as follows:

M1 : RTi ∼ N (β0 + math anxβ1 + diffβ2,σ
2)

M0 : RTi ∼ N (β0 + math anxβ1,σ
2)

and

W2−1 =
11.91− 10.86

10.86

�
15− 2− 1

2− 1

�
= 1.16

Since the observed significance level (p-value) for W2−1 is αobs = 0.3 is higher
then the predefined threshold (0.05), we canont reject H0 at the 5% level. There-
fore, adding the variable diff does not increase the fit of the model for RT.
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Testing non-nested models
Source: 22.1.1 (Fox, 2016); 10.3 (Faraway, 2014)

More generally, in some cases (e.g., non-nested models) model selection can be
performed without the use of inferential tests, which may otherwise be biased if
applied. Two of the most common indices are the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC):

AIC(β̂) = −2 lnL(β̂; y) + 2J

BIC(β̂) = −2 lnL(β̂; y) + (J + 2) ln n

They both penalize the maximum likelihood of the estimated models by adding
a constant depending on the number of variables being included in the model.
Given a set of candidates, the best model is that minimizing AIC or BIC.

We will see how AIC and BIC may be used during the practical sessions of the
course.
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Confidence intervals for µ

Once θ̂ = {β̂, σ̂2} has been estimated, confidence bands for the linear predictor
µ̂ can also be computed. They allow for assessing the uncertainty of the predic-
tions based on the current explanatory variables X.

As for confidence intervals for θ, confidence bands for a fixed 1− α level are as
follows:

ŷ ± t0n−J−1|1−α/2 ·
�

diag (X ((XTX)−1σ̂2)XT )

where
�

diag(X ((XTX)−1σ̂2)XT ) = σµ̂ is the standard deviation for the mean

µ̂, t0n−J−1|1−α/2 is the reference quantile for the t-distribution, and ŷ = Xβ̂.

Similarly, confidence bands can be computed for prediction of µ̂ given a new set
of observations Xnew instead of using the current X. We will see this topic in
the practical sessions of the course.
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Example
Math anxiety and test difficulty
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Confidence bands for µ̂ at the 95% level (dashed gold curves) and estimated means (straight green line).
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Outline

1 Normal linear model
Model specification
Parameter estimation
Goodness of fit
Inference

2 Diagnostics
Normality of residuals
Homoscedasticity
Correctly specifying the linear predictor
Influential observations and outliers

3 Further topics
Categorical predictors
Interactions

4 An illustrative example
Competitive anxiety and HRV in swimmers
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Diagnostics and model evaluation
Source: 11-13 (Fox, 2016); 6 (Faraway, 2014)

Once θ̂ = {β̂, σ̂2} has been estimated, diagnostics should be performed before
using the estimated model for research purposes (e.g., testing experimental hy-
pothesis, clinical interpretations, prediction).

Four main issues need to be checked before any use of the estimated model:

Normality of the response variable y (or equivalently Normality of
residuals e = y − ŷ)

Homoscedasticity Var [y] = σ2

The linear predictor E [y] = Xβ needs to be correctly specified

Absence of influential observations or outliers
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Residuals

Given θ̂ = {β̂, σ̂2}, the residuals e of a Normal linear model are defined as:

e = y − ŷ

= y − Xβ̂

= y − X (XTX)−1XTy

= y −Hy note that Hn×n is the hat matrix

= (I−H)y

With the following expectations:

E [e] = E [(I−H)y]

= E
�
y − X (XTX)−1XT y

�

= E [y] − X (XTX)−1XTE [y]

= Xβ − X ✭✭✭✭✭
(XTX)−1XTXβ

= 0

Var [e] = Var [(I−H)y]

= (I − H)Var [y] (I − H)T

= (I − H)Iσ2(I − H)T

= (I−H)σ2
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Residuals

Three types of residuals can then be defined:

raw: ei ∼ N (0,σ2(1− hii ))

standardized: ẽi =
ei√
1−hii

∼ N (0,σ2)

stundentized: ri =
ei

σ̂2
√

1−hii

.∼ N (0, 1)

The analysis of residuals consist in contrasting the residuals of the fitted model
with that expected by their theoretical model.
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Checking Normality of residuals
Source: 12.1 (Fox, 2016); 6.1.2 (Faraway, 2014)

A quick graphical check for the Normality of residuals consist in plotting quantiles
from standardized residuals and Normal distribution (qq-plot).
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Checking Normality of residuals
Source: 12.1 (Fox, 2016); 6.1.2 (Faraway, 2014)
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qq-plot for the math anxiety example. In case of Normality, standardized residuals should follow the straight line
approximately.
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Checking Normality of residuals
Source: 12.1 (Fox, 2016); 6.1.2 (Faraway, 2014)
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Examples of qq-plots: (A) Normal residuals and (B)-(C) residuals from skewed distributions.
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Checking Normality of residuals
Source: 12.1 (Fox, 2016); 6.1.2 (Faraway, 2014)

Another way to check the Normality of residuals is the Shapiro-Wilk test. The
null hypothesis H0 is that standardized residuals follows the Normal distribution.
Large values for the test statistic W indicate that null hypothesis should be
rejected.

In case of non-Normal residuals, one may try transforming the response variable
(e.g., Box-Cox transformation), using robust estimators for the model parameter,
or changing the modeling approach from Normal linear models to Generalized
linear models (second part of the course).
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Checking Homoscedasticity
Source: 12.2 (Fox, 2016); 6.1.1 (Faraway, 2014)

Non constant variance for residuals can be checked graphically by inspecting the
studentized residuals r as a function of the fitted values ŷ. If the variance is
constant, then no systematic pattern should be noted (residuals do not vary as
a function of fitted values). By contrast, in case of heteroscedasticity residuals
should varies as a function of fitted values and systematic patterns should be
noted in the scatter plot.
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Checking Homoscedasticity
Source: 12.2 (Fox, 2016); 6.1.1 (Faraway, 2014)
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Homoscedasticity check for the math anxiety example. In case of homoscedasticity, no systematic variation should
be noted in the scatterplot (there should be approximately constant variation).
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Checking Homoscedasticity
Source: 12.2 (Fox, 2016); 6.1.1 (Faraway, 2014)
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Examples of (A) homoscedasticity, (B) mild heteroscedasticity, and (C) strong heteroscedasticity.
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Checking Homoscedasticity
Source: 12.2 (Fox, 2016); 6.1.1 (Faraway, 2014)

Another way to check for the Homoscedasticity is the Bartlett test (for grouped
data) or the Breusch-Pagan test (when single observations are available, i.e.
ungrouped data). The null hypothesis H0 is that residuals do not vary as a func-
tion of the explanatory variables. Large values for these test statistics indicate
that null hypothesis should be rejected.

In case of heteroscedasticity, one may try transforming the response variable
by using any variance stabilizing transformation (e.g., square root, logarithm,
arcsin). Alternatively, in the case of non constant variance, maximum likelihood
(or ordinary least squares) based estimators for β and σ2 can be derived using
the weighted least squares method.
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Checking the structural part of the model
Source: 12.3.1 (Fox, 2016); 6.3 (Faraway, 2014)

Plotting the studentized residuals r as a function of the explanatory variable X
can help in identifying whether the linear part of the model E [Y ]i = β0 + xiβ1

holds.

Antonio Calcagǹı University of Padova

PSQ1096299 - First Part (module B) Correctly specifying the linear predictor 48/88



Checking the structural part of the model
Source: 12.3.1 (Fox, 2016); 6.3 (Faraway, 2014)
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Examples of non-linearity w.r.t. an exploratory variable X .
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Checking the structural part of the model
Source: 12.3.1 (Fox, 2016); 6.3 (Faraway, 2014)

When J ≥ 2 partial regression plots (Velleman & Welsch, 1981) should instead
be preferred to find nonlinearities among Yi and the predictors X1, . . . ,XJ .

As an example, consider the simplest case where J = 2. Then, the partial plot
for X2 can be produced by applying the following procedure:

1 compute the residuals e1 = y − (β̂0 + x1β̂1) by taking the effect of x2 out

2 compute the residuals e2 = x2 − (β̂0 + x1β̂1), which allows for computing
the effect of x2 by taking out the effect of x1

3 plot e1 against e2 and look for nonlinearity
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Checking the structural part of the model
Source: 12.3.1 (Fox, 2016); 6.3 (Faraway, 2014)
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Example of partial regression plots for a Normal linear model with J = 2. We can notice that the variable X2
enters the model nonlinearly as opposed to X1.
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Looking for unusual observations
Source: 11 (Fox, 2016); 6.2 (Faraway, 2014)
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Unusual observations consist in
data that may change the
overall fit of the model.
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Looking for unusual observations
Source: 11 (Fox, 2016); 6.2 (Faraway, 2014)
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outliers: Observations that are
far away from the estimated
linear line (J = 1) or
hyperplane (J > 1). They are
points that do not fit the model
very well (A, B).

leverage points: Observations
that are far away from the
estimated linear line or
hyperplane conditionally on the
exploratory variables (B, C).

influential points:
Observations that change the
fit of the model substantively
(B).
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Looking for unusual observations
Source: 11 (Fox, 2016); 6.2 (Faraway, 2014)
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Generally, observations that are
outliers and leverage points
simultaneously (e.g., B) can
have a substantial influence on
the regression coefficients. For
instance, they can change the
magnitude or the sign of β̂.
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Looking for unusual observations
Source: 11 (Fox, 2016); 6.2 (Faraway, 2014)
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By contrast, leverage points
that cannot be classified as
outliers (e.g., C) impact the
model by increasing the overall
fit only, for instance by
increasing the R2 index.
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Identifying leverage points
Source: 11.2 (Fox, 2016); 6.2.1 (Faraway, 2014)

To identity leverage points, leverages can be computed once the model has been
estimated. The diagonal of the n × n hat matrix H

h = diag (H)

= diag
�
X(XTX)−1XT

�

is used to compute leverage values for each observation. As leverages are related
to the variance of the residuals through the formula σ2

e = diag (I−H) σ̂2, a large
leverage hi will make σ2

ei very small and the fit ŷi will be attracted toward the
observation yi .

Leverages larger three or more times the average hat-value h should be checked
carefully.
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Identifying leverage points
Source: 11.2 (Fox, 2016); 6.2.1 (Faraway, 2014)
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Partial regression plots for the math anxiety example with suspected leverage points.
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Identifying outliers
Source: 11.3 (Fox, 2016); 6.2.2 (Faraway, 2014)

To identify outliers from the set of observations, we can quickly inspect the
(absolute value of the) studentized residuals |r| of the fitted model and look
for those observations showing larger residuals.

As ri ∼ t(; n− J − 2), a two-sided Bonferroni adjusted p-value can be computed
under the null hypothesis that ri is not an outlier point:

αobs
adj = 1− P(T 0

n−J−2|1−α/2 > |ri |)2n

If αobs
adj is lower then a predefined threshold (e.g., 0.05), then H0 is rejected and

yi has to be considered as outlier.
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Identifying influential points
Source: 11.4 (Fox, 2016); 6.2.3 (Faraway, 2014)

An influential point is one whose removal from the dataset would cause a large
change in the fit. The influence of an observation can be summarized in terms
of Cook’s distance, which relates studentized residuals r to leverages h:

di =
r 2i

J + 1

hi
1− hi

The formula reflects the fact that observations with larger leverage are more
likely to exert a substantive influence on the regression coefficients β̂.
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Identifying influential points
Source: 11.4 (Fox, 2016); 6.2.3 (Faraway, 2014)
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Influential plot for the math anxiety example. Note that the size of each point is proportional to Cook’s distances,
horizontal reference lines (in blue color) are drawn at studentized residuals of 0 and ±2, vertical reference lines (in

red color) are drawn at hat-values of 2h and 3h.

Points with larger hat-value as well as leverage should carefully be checked.
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Identifying influential points
Source: 11.4 (Fox, 2016); 6.2.3 (Faraway, 2014)
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Influential plot for the math anxiety example. Note that the size of each point is proportional to Cook’s distances
whereas blue and red curves are the contour lines (ld0=0.5 and ld0=1, respectively) of the Cook’s distance. Any

point that lies beyond these contours might well be influential and require closer attention.

For a fixed d0, they are obtained as follows: ld0 = ±
�

d0(J + 1)
(1−h)

h
.
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Identifying influential points
Source: 11.4 (Fox, 2016); 6.2.3 (Faraway, 2014)

Influential observations can seriously affect the estimation of regression coeffi-
cients β̂.

Given an influential observation i , a way to quantify such an influence is evaluat-
ing the difference between regression coefficients computed including the point
(β̂) and those obtained by excluding that point (β̂−i ):

diffβ̂ = (XTX)−1(1nxi )(yi − ŷi )

where xi is the 1× J vector containing the i-th influential observation.

The larger the quantity diffβ̂, the more attention should be paid to fitted coeffi-
cients.
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Handling with unusual observations
Source: 11.7 (Fox, 2016)

Once unusual observations have been identified, one may ask what to do further.

Unusual observations can be caused by errors during the sampling process. In this case, it may be
legitimate to remove them from the data.

It may be the case that the measurement process is incorrect for the unusual observations (e.g., different
experimental conditions). In this case, removing those observations may not be legitimate. On the
contrary, two analyses may be instead run by including and excluding the unusual observations. Then,
appropriate comments may be made about that.

It may also happen that unusual observations are extreme but still plausible realizations of the (random)
sampling process. As before, removing those observations may be unfair. In this particular case, some
solutions include using robust estimators for the regression coefficients or using linear models without the
assumption of Gaussianity (second part of the course).

In general, removing unusual observations should be done carefully. Finally,
in large samples, unusual data substantially alter the results only in extreme
instances.
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Outline

1 Normal linear model
Model specification
Parameter estimation
Goodness of fit
Inference

2 Diagnostics
Normality of residuals
Homoscedasticity
Correctly specifying the linear predictor
Influential observations and outliers

3 Further topics
Categorical predictors
Interactions

4 An illustrative example
Competitive anxiety and HRV in swimmers
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Categorical predictors
Source: 7.1, 7.2 (Fox, 2016)

Let the random realizations y ∈ Rn be modeled as y ∼ N (Xβ, Iσ2). When X is
categorical we need to appropriately codify the information of the independent
variables in order to get meaningful regression coefficients.

Examples of categorical predictors in linear models include gender, occupation,
experimental or treatment groups.

Dummy coding is a common way to represent categorical information in statis-
tical models. Other representation include Helmert coding, treatment coding,
and sum coding.
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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

Let D be a categorical variable with K levels taking values in the set {d1, . . . , dK}.
The dummy coding transforms D into a set of K−1 Boolean variables (Z1, . . . ,ZK−1),
with Zk ∈ {0, 1}.

To dummify D we need as many boolean variables as the levels of D minus one.

Two examples are as follows:

Y D Z

y1 M 0
y2 M 0
y3 M 0
y4 F 1
y5 F 1
y6 F 1
...

...
...

Y D Z1 Z2

y1 G1 0 0
y2 G1 0 0
y3 G2 1 0
y4 G2 1 0
y5 G3 0 1
y6 G3 0 1
...

...
...

...
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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

When used in Normal linear and generalized linear models, dummy coding gen-
erates a set of nested models.

To see this point, consider the case of a simple model y ∼ N (β0+xβ1,σ
2), with

x = dn×1 being a categorical variables with three distinct levels, di ∈ {A,B,C}.

In this case, as K = 3 we need K − 1 = 2 dummy variables as follows:

di =





A, z
(1)
i = 0 ∧ z

(2)
i = 0

B, z
(1)
i = 1 ∧ z

(2)
i = 0

C , z
(1)
i = 0 ∧ z

(2)
i = 1
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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

When used in Normal linear and generalized linear models, dummy coding gen-
erates a set of nested models.

To see this point, consider the case of a simple model y ∼ N (β0+xβ1,σ
2), with

x = dn×1 being a categorical variables with three distinct levels, di ∈ {A,B,C}.

Rewriting the linear model with dummy coding leads to:

y ∼ N (1β0 + z(1)β1 + z(2)β2,σ
2I)

∼ N (1β0 + Zβ,σ2I)
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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

When used in Normal linear and generalized linear models, dummy coding gen-
erates a set of nested models.

To see this point, consider the case of a simple model y ∼ N (β0+xβ1,σ
2), with

x = dn×1 being a categorical variables with three distinct levels, di ∈ {A,B,C}.

In matrix notation:




y1
.
.
.
yi
.
.
.
yn




� �� �
y

∼ N







1 . . . z
(1)
1 . . . z

(2)
1

.

.

.

.

.

.

.

.

.

1 . . . z
(1)
i . . . z

(2)
i

.

.

.

.

.

.

.

.

.

1 . . . z
(1)
n . . . z

(2)
n







β0

.

.

.
β1

.

.

.
β2




� �� �
µ=Zβ

,




1 . . . . . .

.

.

.

.

.

.
. . . 1 . . .

.

.

.

.

.

.
. . . . . . 1




σ
2

� �� �
Σ=σ2 I



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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

When used in Normal linear and generalized linear models, dummy coding gen-
erates a set of nested models.

To see this point, consider the case of a simple model y ∼ N (β0+xβ1,σ
2), with

x = dn×1 being a categorical variables with three distinct levels, di ∈ {A,B,C}.

In this case, as K = 3 we need K − 1 = 2 dummy variables as follows:

di =





A, z
(1)
i = 0 ∧ z

(2)
i = 0

B, z
(1)
i = 1 ∧ z

(2)
i = 0

C , z
(1)
i = 0 ∧ z

(2)
i = 1
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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

When used in Normal linear and generalized linear models, dummy coding gen-
erates a set of nested models.

To see this point, consider the case of a simple model y ∼ N (β0+xβ1,σ
2), with

x = dn×1 being a categorical variables with three distinct levels, di ∈ {A,B,C}.

Rewriting the linear model with dummy coding leads to:

y ∼ N (1β0 + z(1)β1 + z(2)β2,σ
2I)

∼ N (1β0 + Zβ,σ2I)
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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

When used in Normal linear and generalized linear models, dummy coding gen-
erates a set of nested models.

To see this point, consider the case of a simple model y ∼ N (β0+xβ1,σ
2), with

x = dn×1 being a categorical variables with three distinct levels, di ∈ {A,B,C}.

In matrix notation:




y1
.
.
.
yi
.
.
.
yn




� �� �
y

∼ N







1 . . . z
(1)
1 . . . z

(2)
1

.

.

.

.

.

.

.

.

.

1 . . . z
(1)
i . . . z

(2)
i

.

.

.

.

.

.

.

.

.

1 . . . z
(1)
n . . . z

(2)
n







β0

.

.

.
β1

.

.

.
β2




� �� �
µ=Zβ

,




1 . . . . . .

.

.

.

.

.

.
. . . 1 . . .

.

.

.

.

.

.
. . . . . . 1




σ
2

� �� �
Σ=σ2 I



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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

As z
(1)
i ∈ {0, 1} and z

(2)
i ∈ {0, 1}, we can note that

M0
def
= yi ∼ N (β0,σ

2) when z
(1)
i = 0 ∧ z

(2)
i = 0

M1
def
= yi ∼ N (β0 + β1,σ

2) when z
(1)
i = 1 ∧ z

(2)
i = 0

M2
def
= yi ∼ N (β0 + β2,σ

2) when z
(1)
i = 0 ∧ z

(2)
i = 1

The models are nested w.r.t. the regression coefficients β, i.e. (M0 ⊂ M1 ⊂ M2).

Note: as we are modeling the means of y, there are no slopes in the models
except intercepts.
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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

Estimating and testing θ = {β,σ2} in linear models with dummy coding is the
same as for continuous predictors (just replace X with Z).

Regression coefficients can be estimated in terms of mean.

In case of K − 1 = 1 (one dummy variable), we have:

β0 indicates the reference level which refers to the case Z = 0

β1 indicates the incremental/decremental quantity at Z = 1 from Z = 0

and

E [y|Z = 0] = β0

E [y|Z = 1] = β0 + β1

Antonio Calcagǹı University of Padova

PSQ1096299 - First Part (module B) Categorical predictors 63/88

Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

In case of K − 1 = 2 (two dummy variables), we instead have:

β0 indicates the reference level which refers to the case Z1 = 0 and Z2 = 0

β1 indicates the incremental/decremental quantity at Z1 = 1 from Z1 = 0
and Z2 = 0

β2 indicates the incremental/decremental quantity at Z2 = 1 from Z1 = 0
and Z2 = 0

and

E [y|Z1 = 0,Z2 = 0] = β0

E [y|Z1 = 1,Z2 = 0] = β0 + β1

E [y|Z1 = 0,Z2 = 1] = β0 + β2
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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

Z = 0 Z = 1

0
2

4
6

(A) (B)

Z = 0 Z = 1

b0

b0 + b1

Example of a Normal linear model with one dummy variable Z .
(A) Box-plot for the response variable as a function of the dummy levels.
(B) Estimated means (dotted gray lines with black triangles) and regression line (red straight line)
as a function of the dummy levels.
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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

M.E F.E M.C F.C

2
4

6
8

1
0

1
2

(A) (B)

M.E F.E M.C F.C

b0

b0 + b2

b0 + b1

b0 + b1 + b2

Example of a Normal linear model with two dummy variable Z1 ∈ {E , C} and Z2 ∈ {M, F}.
(A) Box-plot for the response variable as a function of the dummy levels.
(B) Estimated means (dotted gray lines with black triangles) and regression lines (red straight lines)
as a function of the dummy levels.
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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

Dummy-coding can also be used when the matrix of data contains both cate-
gorical and continuous variables.

Let Xn×J be a matrix of real data and Zn×K−1 a matrix of dummy variables
(with K being the number of categorical variables). Then,

y ∼ N (XβX + ZβZ , Iσ
2)

is a Normal linear model containing both continuous and categorical variables.

With no loss of generality, we can rewrite the model as

y ∼ N (X∗β, Iσ2)

where X∗ = [X|Z] is the n× (J +K − 1) staked matrix obtained by juxtaposing
X and Z.
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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

In matrix notation:




y1
.
.
.
yi
.
.
.
yn




� �� �
y

∼ N







1 x11 . . . x1J | . . . z1,K−1

.

.

.

.

.

.

.

.

.

.

.

.
1 xi1 . . . xiJ | . . . zi,K−1

.

.

.

.

.

.

.

.

.

.

.

.
1 xn1 . . . xnJ | . . . zn,K−1







β0

.

.

.
βJ

.

.

.
βJ+K−1




� �� �
µ=X∗ β

,




1 . . . . . .

.

.

.

.

.

.
. . . 1 . . .

.

.

.

.

.

.
. . . . . . 1




σ
2

� �� �
Σ=σ2 I



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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

Consider the simplest case where J = 1 and K = 3, then we have two dummy
variables z

(1)
i ∈ {0, 1} and z

(2)
i ∈ {0, 1} and a single continuous independent

variable x. We then get:

M0
def
= yi ∼ N (1β0 + xβ1,σ

2) when z
(1)
i = 0 ∧ z

(2)
i = 0

M1
def
= yi ∼ N (1β0 + xβ1 + 1β2,σ

2) when z
(1)
i = 1 ∧ z

(2)
i = 0

M2
def
= yi ∼ N (1β0 + xβ1 + 1β3,σ

2) when z
(1)
i = 0 ∧ z

(2)
i = 1

Also in this case, dummy coding generates a set of nested linear equations
w.r.t. parameters (M0 ⊂ M1 ⊂ M2).

Note: we now have slopes in the models (i.e., β1). The parameters (β2,β3) of
dummy variables can be aggregated with the intercept β0.
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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

Estimating and testing θ = {β,σ2} in linear models with dummy coding is the
same as for continuous predictors (just replace X with X∗).

In this case with two dummy variables and one continuous predictor, we have:

β0 indicates the intercept of the model

β1 indicates the slope of the model

β2 indicates the increment/decrement of the intercept when Z1 = 1 and
Z2 = 0

β3 indicates the increment/decrement of the intercept when Z1 = 0 and
Z2 = 1

and

E [y|Z1 = 0,Z2 = 0] = β0 + xβ1

E [y|Z1 = 1,Z2 = 0] = (β0 + β2) + xβ1

E [y|Z1 = 0,Z2 = 1] = (β0 + β3) + xβ1
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Categorical predictors: Dummy coding
Source: 7.1, 7.2 (Fox, 2016)

-1 -0.5 0 0.5 1

b0

b0 + b2
b0 + b3

b0 + b2 + b3

Example of a Normal linear model with two dummy variable Z1 ∈ {E , C} and Z2 ∈ {M, F} and
one continuous predictor. Note that dummy levels are represented with different colors whereas
the real variable is on the x-axis.
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Modeling interactions
Source: 7.3 (Fox, 2016)

Consider a continuous variable X1, X2 along with a categorical variable with two
levels D = {A,B}. Then, the product term

(X1 · X2)

is the interaction between two continuous variables whereas

(D · X1) or (D · X2)

are the interactions between continuous and categorical variables.

Antonio Calcagǹı University of Padova

PSQ1096299 - First Part (module B) Interactions 71/88

Modeling interactions
Source: 7.3 (Fox, 2016)

When the terms (X1 · X2) and (Xj · D), j = 1, 2 are used as predictors of a
dependent variable Y , we say that

X1 predicts Y as a function of X2 (continuous-continuous interaction)

Y differs over the levels of D as a function of Xj (categorical-continuous
interaction)
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Modeling interactions
Source: 7.3 (Fox, 2016)

Consider the simplest case with J = 1 and K = 2. Then we have:

y ∼ N (1β0 + x1β1 + zβ2 + x1 ◦ zβ3, Iσ
2)

y ∼ N (X†β, Iσ2)

Note: ◦ is the element-wise product between two vectors.
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Modeling interactions
Source: 7.3 (Fox, 2016)

In matrix notation:




y1
.
.
.
yi
.
.
.
yn




� �� �
y

∼ N







1 x
(1)
1 z1 z · x(1)1

.

.

.

.

.

.

.

.

.

.

.

.

1 x
(1)
i zi z · x(1)i

.

.

.

.

.

.

.

.

.

.

.

.

1 x
(1)
n zn z · x(1)n







β0

.

.

.
β1

.

.

.
β2

.

.

.β3




� �� �
µ=X†β

,




1 . . . . . .

.

.

.

.

.

.
. . . 1 . . .

.

.

.

.

.

.
. . . . . . 1




σ
2
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Σ=σ2 I


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Modeling interactions
Source: 7.3 (Fox, 2016)

When J = 1 and K = 2, then we have one dummy variable zi ∈ {0, 1} and two
continuous independent variable x1, x2. We then get:

M0
def
= y ∼ N (1β0 + x1β1) when Z = 0

M1
def
= y ∼ N (1β0 + x1β1 + 1β2 + 1β3 when Z = 1

. . . y ∼ N (1(β0 + β2) + x1(β1 + β3))

Also in this case, dummy coding generates a set of nested linear equations
w.r.t. parameters (M0 ⊂ M1 ⊂ M2).

Note:

the effect of the categorical variable is included in the intercept 1(β0 +β2)

the effect of the interaction variable is included in the slope x(β1 + β3)
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Modeling interactions
Source: 7.3 (Fox, 2016)

Estimating and testing θ = {β,σ2} in linear models with dummy coding is the
same as for continuous predictors (just replace X with X†).

In this case with one dummy variable and two continuous predictors, we have:

β0 indicates the intercept of the model when Z = 0 (marginal effect of Z)

β2 indicates the slope when Z = 0 (marginal effect of X1)

β0 + β1 indicates the intercept of the model when Z = 1 (marginal effect of Z)

β1 + β3 indicates the increment/decrement of the slope when Z = 1
(interaction effect)

and

E [y|Z = 0] = β0 + xβ1

E [y|Z = 1] = (β0 + β2) + x(β1 + β3)
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Modeling interactions
Source: 7.3 (Fox, 2016)

-1.0 0.0 0.5 1.0

-1
0

-5
0

(A)

-1.0 0.0 0.5 1.0
-1
0

-5
0

(B)

-1.0 0.0 0.5 1.0

-1
0

-5
0

(C)

Example of a Normal linear model with an interaction between a dummy variable Z ∈ {0, 1} and a continuous
variable X . Note that dummy levels are represented with different colors whereas the real variable is on the x-axis.
(A) Marginal plot of X for Z = 0; (B) Marginal plot of X for Z = 1; (C) Interaction plot for X · Z .
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Modeling interactions
Source: 7.3 (Fox, 2016)

Modeling high-order interactions (J > 1 and K > 2) is performed using the
same rationale which applies for the simplest case. In this case, the model
should also include all the low-order terms (principle of marginality) and the
incremental F -test (slide 37, module B) is used to choose which of the terms
should be retained in the final model.

However, with high-order interactions caution should be taken in interpreting
the regression coefficients. Indeed, as interaction terms increase, the model
complexity increases as well.
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Outline

1 Normal linear model
Model specification
Parameter estimation
Goodness of fit
Inference

2 Diagnostics
Normality of residuals
Homoscedasticity
Correctly specifying the linear predictor
Influential observations and outliers

3 Further topics
Categorical predictors
Interactions

4 An illustrative example
Competitive anxiety and HRV in swimmers
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An illustrative example
Introduction

Background: Hear rate variability (HRV) is a measure regarding the modula-
tion of the heart. Scientific findings have shown an important relation between
sports performance and HRV. In general, athletes with great performance show
increased HRV level and higher levels of pre-competitive anxiety can lead to im-
paired HRV during sport competitions.

Variables: HRV (as measured by the RRMSD), competitive anxiety (as measured
by CSAI-2R), body fat percent (BF), international point score in 0-1000 (IPS:
The closer the score is to 1000, the better the athlete’s performance).

Goal: Define and fit a Normal linear model in order to predict HRV as a function
of CSAI, BF, and IPS.

Source: Fortes, L. S., da Costa, B. D., Paes, P. P., do Nascimento Júnior, J. R., Fiorese, L., & Ferreira, M. E.
(2017). Influence of competitive-anxiety on heart rate variability in swimmers. Journal of sports science & medicine,
16(4), 498.
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An illustrative example
Data and descriptive analyses

HRV BF IPS CSAI (cat)
1 101.47 27.66 723.10 0
2 -153.45 19.65 821.96 1
3 -69.03 18.05 701.34 1
4 -88.95 21.19 723.41 1
5 -69.53 22.80 656.71 1
6 106.10 20.01 852.12 0
7 118.02 25.35 774.47 0
8 -96.01 17.09 699.36 1
9 139.44 21.87 648.08 0
10 -104.36 26.18 773.47 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

n mean sd median min max
hrv (low csai) 125 115.45 22.58 111.84 59.93 184.92
bf (low csai) 125 20.45 4.69 20.24 9.49 32.40
ips (low csai) 125 757.58 65.83 769.64 537.65 960.12

hrv (high csai) 125 -107.44 23.91 -108.20 -165.88 -54.19
bf (high csai) 125 20.03 4.58 20.04 6.57 30.47
ips (high csai) 125 760.94 73.11 758.61 545.08 967.37
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An illustrative example
Data and descriptive analyses
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(A) Scatter plot of HRV and BF as a function of CSAI
(B) Scatter plot of HRV and IPS as a function of CSAI
(C) Box plot of HRV as a function of CSAI
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An illustrative example
First model (additive): definition

The goal here is to evaluate whether HRV varies as a linear function of BF, IPS,
and CSAI:

HRVi = β0 + BFiβ1 + IPSiβ2 + CSAIβ3 + �i

Under the assumption �i ∼ N (0,σ2), we get the Normal linear model:

HRVi ∼ N
�
β0 + BFiβ1 + IPSiβ2 + CSAIβ3,σ

2
�

Note that CSAI is a categorical variable with two levels (0: low; 1: high). Using
the (standard) dummy coding for this variable, we get as follows:

β0 codifies the level CSAI=0 (baseline/intercept)

β3 quantifies the increment/decrement of HRV obtained when CSAI=1
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An illustrative example
First model (additive): parameter estimation

Using the maximum-likelihood results for β (estimate) and σ2 (residual
variance), we get the following estimates along with the standard errors σβ̂

(Std. Error):

Estimate Std. Error
Intercept (CSAI:0) 121.935 17.403
BF 0.964 0.312
IPS -0.035 0.021
CSAI:1 -222.376 2.882

Residual variance 518.002
R2 0.961

Note:

The average level of HRV when CSAI=0 is β0 = 121.935

When CSAI=1, the average level of HRV decreases by β3 = −222.376 units

HRV is positively associated to BF (β1 = 0.964)

HRV does not linearly depend on IPS (β2 = −0.035)

The overall fit of the model is satisfactory (R2 = 0.961)
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An illustrative example
First model (additive): parameter estimation
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Partial regression plots for HRV as a function of the predictors BF, IPS, and CSAI respectively.
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An illustrative example
First model (additive): inference

The t-statistics (t-value) along with their observed significance levels (Pr(>|t|))
can be computed to make inference about β̂. Similarly, 1−α CIs (CI lb and CI

ub) can also be computed for the estimated regression coefficients (α = 0.05).

Estimate Std. Error t-value Pr(> |t|) CI lb CI ub
Intercept (CSAI:0) 121.935 17.403 7.007 0.000 87.658 156.212
BF 0.964 0.312 3.086 0.002 0.349 1.579
IPS -0.035 0.021 -1.662 0.098 -0.076 0.006
CSAI:1 -222.376 2.882 -77.147 0.000 -228.054 -216.699

Residual variance 518.002
R2 0.961

Note:

For the variable IPS the null hypothesis H0 : β2 = 0 cannot be rejected.
Consistently, the 95% confidence interval for this coefficient contains zero.
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An illustrative example
First model (additive): diagnostics
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(A) Normality of the residuals
(B) Homoscedasticity conditioned on CSAI=0

(C) Homoscedasticity conditioned on CSAI=1
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An illustrative example
First model (additive): diagnostics
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Partial residual plots with suspected leverage observations.
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An illustrative example
First model (additive): diagnostics
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Influential plot with suspected influential observations. Note that the most influential observation (i = 46) is not

classified as influential since the Bonferroni-adjusted t-test is not significant (r46 = 3.047,α
adj
obs

= 0.642).
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An illustrative example
Second model (interaction): definition

We can ask whether adding the term CSAI×IPS would generally improve the fit
of the previous model:

HRVi = β0 + BFiβ1 + IPSiβ2 + CSAIβ3 + (CSAI× IPS)β4 + �i

Under the assumption �i ∼ N (0,σ2), we get the Normal linear model:

HRVi ∼ N
�
β0 + BFiβ1 + IPSiβ2 + CSAIβ3 + (CSAI× IPS)β4,σ

2
�

Note that CSAI is a categorical variable with two levels (0: low; 1: high). Using
the (standard) dummy coding for this variable, we get as follows:

β0 codifies the level CSAI=0 (baseline/intercept)

β3 quantifies the increment/decrement of HRV obtained when CSAI=1

β4 quantifies the interaction effect between IPS and CSAI
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An illustrative example
Second model (interaction): parameter estimation and inference

Estimate Std. Error t-value Pr(> |t|) CI lb CI ub
Intercept (CSAI:0) 2.928 22.682 0.129 0.897 -41.748 47.604
BF 1.085 0.284 3.820 0.000 0.525 1.644
IPS 0.119 0.028 4.219 0.000 0.064 0.175
CSAI:1 -11.434 28.965 -0.395 0.693 -68.486 45.619
IPS x CSAI:1 -0.278 0.038 -7.313 0.000 -0.353 -0.203

Residual variance 426.935
R2 0.968

The incremental F -test can be used to evaluate the new model:

DF RSS SS F stat Pr(> F ) AIC
model 0 246.000 127428.516 2277.932
model 1 245.000 104599.000 22829.517 53.473 0.000 2230.576

Notes: DF: degrees of freedom calculated as n − J − 1; RSS: residual sum of squares; SS: sum of squares; F stat:
F -statistic calculated as ration of squares (see slide 37, module B) with associated p-value (or observed significance
level).
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An illustrative example
Second model (interaction): parameter estimation and inference

DF RSS SS F stat Pr(> F ) AIC
model 0 246.000 127428.516 2277.932
model 1 245.000 104599.000 22829.517 53.473 0.000 2230.576

Notes:

The t-statistic for the IPS variable is significant now

The t-statistic for the CSAI variable is instead not significant after the
interaction term has been added

The R2 index is large showing that the model still shows a very good fit

The incremental F -test (or Anova table) shows that the interaction model
shows better performance as opposed to the simplest additive model
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An illustrative example
Second model (interaction): parameter estimation and inference
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Partial regression plots for HRV as a function of the predictors BF, IPS, CSAI, and IPS×CSAI, respectively.
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An illustrative example

Likewise for the simplest additive model, diagnostics can be computed for the
current model as well.

During the practical sessions of the course, we will learn further strategies to
deal with Normal linear models and data analysis.
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Outline

1 Mixed-effect Normal linear model
Introduction
Model specification
Parameter estimation
Inference
Diagnostics

2 An illustrative example
Reaction times in a one factor experimental design
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Introduction
Source: 23.1 (Fox, 2016)

There are several situations where observations y1, . . . , yn are dependent such as
when:

Students are sampled from a random sample of schools (two levels of
sampling: 1. schools; 2. students within each school).

Patients are sampled within physicians which are in turn sampled within
hospitals (three levels of sampling: 1. hospitals; 2. physicians; 3.
patients).

Subjects are measured over time in a controlled experiment (repeated
measurements)
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Introduction
Source: 23.1 (Fox, 2016)

In both cases, observations are no longer independent as they are clustered in
m = 1, . . . ,M clusters or subgroups (known in advance).

To deal with this issue, the standard Normal linear model needs to be extended
properly. There are a number of ways to deal with non-independent observations
including marginal models (where structured covariance matrices can be used to
model the covariance matrix of the errors), time-series, and linear mixed-effects
models.

In this course, we will briefly learn linear mixed-effects model (LMMs) along
with their use in practical applications. Particularly, we will focus on single-level
LMMs (or random-intercept Normal linear model).
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Model specification
Source: 23.2 (Fox, 2016)

Let

Y1 = (Y11, . . . ,Y1m . . . ,Y1M)

...

Yi = (Yi1, . . . ,Yim . . . ,YiM)

...

Yi = (Yn1, . . . ,Ynm . . . ,YnM)

be a collection of random variables independent over i = 1, . . . , n. For each
outcome yi , a set of (non-random) variable is collected so that the observed
sample can be represented in terms of pairs:

y = {(y1x1), . . . , (yixi ), . . . , (ynxn)}

where yi is a M × 1 vector of dependent observations.
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Model specification
Source: 23.2 (Fox, 2016)
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Structure of the data:

i = 1, . . . , n is the index set for the first
level of sampling (subjects)

m = 1, . . . ,M is the index set for the
second level of sampling (groups or
clusters)

There are M clusters of dependent
observations y(i)M×1 = (yi1, . . . , yiM)

The explanatory variables x1, . . . , xJ are
repeated within each cluster

The are M × n observations in the dataset
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Model specification
Source: 23.2 (Fox, 2016)

The Normal linear model with random-intercept is of the form:

ηi ∼ N (0, Iσ2
η)

yi |ηi ∼ N (µi , Iσ
2
y )

µi = β0 + Xiβ + ηi

where ηi is the M × 1 vector containing the random components (also called
intercepts) of the model, Xi = 1M×1xi is a M × J matrix containing (row-wise)
replicates of the predictors xi , {β0,β} are the regression coefficients, whereas
σ2
η and σ2

y are the variances of the random effects and errors, respectively.
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Model specification
Source: 23.2 (Fox, 2016)

ηi ∼ N (0, Iσ2
η)

yi |ηi ∼ N (µi , Iσ
2
y )

µi = β0 + Xiβ + ηi

The interpretation of the model parameter is the same as for the standard Normal
linear model. In this case:

β0,β are called fixed effects (they are parameters)

ηi are called random effects (they are not parameters but unobservable
random realizations)
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Model specification
Source: 23.2 (Fox, 2016)

ηi ∼ N (0, Iσ2
η)

yi |ηi ∼ N (µi , Iσ
2
y )

µi = β0 + Xiβ + ηi

The following assumptions hold:

η1, . . . , ηM are i.i.d. realizations as well as y1, . . . , yn

yim and yih (m �= h) for a fixed i are not independent

σ2
η and σ2

y are independent
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Model specification
Source: 23.2 (Fox, 2016)

ηi ∼ N (0, Iσ2
η)

yi |ηi ∼ N (µi , Iσ
2
y )

µi = β0 + Xiβ + ηi

In this case, the mean of the marginal model for yi is

E [Yi ] = β0 + Xiβ

whereas the variance is
Var [Yi ] = σ2

y + σ2
η

We can notice that the random-effect modifies the variance of the
model (the mean is still the same).
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Model specification
Source: 23.2 (Fox, 2016)

ηi ∼ N (0, Iσ2
η)

yi |ηi ∼ N (µi , Iσ
2
y )

µi = β0 + Xiβ + ηi

The correlation between two different observations Yim and Yih for a fixed unit i
is as follows:

Cor [Yim,Yih] =
σ2
η

σ2
y + σ2

η

This term is also called intraclass correlation and it can be used to assess how
much of the total variance is due to within-subject variation σ2

η.
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Parameter estimation
Source: 23.2, 23.9 (Fox, 2016)

The parameters of the single-level Normal linear model θ = {β0,β,σ
2
y ,σ

2
η} can

be estimated by maximizing the marginal likelihood of the model

L(y;θ) =
n�

i=1

�

R
fYi ||ηi (y;µ, Iσ

2
y )fηi (η; Iσ

2
η) dη

which is obtained by integrating out the random effects η1, . . . ,ηn.

To this purpose, several numerical methods are available such as Restricted
Marginal Maximum Likelihood (REML) or Expectation Maximization (EM). In
both cases, the procedure estimate the parameters only whereas random effects
are recovered after parameter estimation.
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Parameter estimation
Source: 23.2, 23.9 (Fox, 2016)

Once the parameters have been (numerically) estimated, inference on the fixed-
effects can be performed by knowing that

E [β] = β

Var [β] = (XTS−1X)−1

where
S = σ2

ηZZ
T + Iσ2

y

is the variance-covariance matrix of the regression coefficients (fixed-effects) with

Znm×n = In×n ⊗ 1m×1

being the block matrix of the random-effects (⊗ indicates the Kronecker product)
and I an identity matrix of appropriate order.
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Parameter estimation
Source: 23.8 (Fox, 2016)

ML-based methods allow for estimating θ by marginalizing over the random
effects. In doing so, they are not recovered together with the model parameters.

In order to recover η̂ conditioned on the current estimates, one may use the
following linear estimator:

η̂ = E
�
η|θ̂, y

�
= σ2

ηZ
T�S−1(y − Xβ̂)

where the estimated variances σ̂2
η and σ̂2

y are used in the variance-covariance

quantity �S. The estimator is the best linear unbiased estimator (BLUP) for
the random-effect quantities.

The recovered η̂ can be used as new data in subsequent analyses (e.g., cluster
analysis).
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Inference
Source: 23.2, 23.9 (Fox, 2016)

Testing individual coefficients

Testing individual coefficients (fixed-effects) can be performed using t-statistics
(see slides 30-31, Module B) with the standard errors of the estimates being
computed as follows:

σβ̂ =

�
diag

�
(XT�S−1X)−1

�

where the estimated variances σ̂2
η and σ̂2

y are used in the variance-covariance

quantity �S.

Observed significance levels (p-values) for the t-statistics under the null hypothe-
ses can be computed using the Sattherwite approximation or via parametric boot-
strap.
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Inference
Source: 23.2, 23.9 (Fox, 2016)

Testing subset of coefficients

Likewise for the standard Normal linear model (see slides 35-38, module B),
testing subset of coefficients (fixed-effects) can be performed by comparing the
baseline model M0 (e.g., null model) against the full or target model M1.

Unlike the standard case, the Likelihood Ratio Test (LRT) has to be used here:

W1|0 = 2
�
lnL1(θ̂; y)− lnL0(θ̂; y)

�

which under the null hypothesis is distributed according to a χ2 distribution:

W1|0
.∼ χ2(W ; df1 − df0)

where for the single-level model df = J + 1 + 2.

As usual, large values of W1|0 allows for rejecting H0.
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Inference
Source: 23.2, 23.9 (Fox, 2016)

Testing subset of coefficients

Likewise for the standard Normal linear model (see slides 35-38, module B),
testing subset of coefficients (fixed-effects) can be performed by comparing the
baseline model M0 (e.g., null model) against the full or target model M1.

Unlike the standard case, the Likelihood Ratio Test (LRT) has to be used here:

W1|0 = 2
�
lnL1(θ̂; y)− lnL0(θ̂; y)

�

Note that in this case the log-likelihood of the model lnL(θ̂; y) is obtained by
refitting the model via standard ML approach (e.g., no REML).
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Inference
Source: 23.2, 23.9 (Fox, 2016)

Testing non-nested models

Non-nested random-effect Normal linear models can be compared by assessing
AIC or BIC indices as for the standard case (see slide 39, module B). As usual,
the minimum-AIC (or minimum-BIC) criterion has to be used in order to choose
the best model between two competing models.
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Diagnostics

Diagnostics for estimated random-effect Normal linear models can be performed
similarly to the standard Normal linear model.

We will see more on this topic during the practical sessions of the course.
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Outline

1 Mixed-effect Normal linear model
Introduction
Model specification
Parameter estimation
Inference
Diagnostics

2 An illustrative example
Reaction times in a one factor experimental design
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An illustrative example
Introduction

Background: Reaction times (RTs) is a well-known measure of cognitive pro-
cessing. In this experiment, it is used to measure the cognitive loading of a math
task in two experimental scenario: (a) standard homework (e.g., students do it
alone); (b) innovative homework (e.g., students work partially in group).

Variables: RTs (in sec.) and type of homework (H) with two levels.

Goal: Define and fit a Normal linear model in order to predict RTs as a function
of H. The model should take into account the within-subject variability measured
during the task as it is expected that individuals have different response styles.
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An illustrative example
Data and descriptive analyses

sbj H RT
1 1 17.16
1 1 16.75
1 1 19.42
1 1 23.20
1 1 17.34
2 1 19.70
2 1 23.54
2 1 18.33
2 1 21.83
2 1 21.83
3 1 21.76
3 1 23.39
3 1 19.72
3 1 16.87
3 1 21.95

.

.

.

.

.

.

.

.

.

n mean sd median min max
RT (standard homew) 500 19.87 2.72 19.94 10.60 27.30
RT (innovative homew) 500 26.34 2.88 26.21 18.00 34.11
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An illustrative example
Data and descriptive analyses

y
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RT as a function of the two-level variable H (1: standard homework, 2: innovative homework).
Note that each panel represents a single participant of the experiment.
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An illustrative example
Model: definition

The goal here is to evaluate whether RT varies as a linear function of H by taking
into account the within-subject variability (codified as sbj):

RTi = β0 + Hiβ1 + sbji + �i

Under the assumptions �i ∼ N (0,σ2
y ) and sbji ∼ N (0,σ2

η), we get the random-
effect Normal linear model:

RTi ∼ N
�
β0 + Hiβ1 + sbji ,σ

2
�

Note that H is a categorical variable with two levels (1: standard homew; 2:
innovative homew). Using the (standard) dummy coding for this variable, we
get as follows:

β0 codifies the level H=1 (baseline/intercept)

β2 quantifies the increment/decrement of H when H=2

Antonio Calcagǹı University of Padova

PSQ1096299 - First Part (module C) Reaction times in a one factor experimental design 22/25

An illustrative example
Model: parameter estimation and inference

Estimate Std. Error df (Satterw approx) t-value Pr(> |t|) CI lb CI ub
Intercept (H:1) 19.846 0.174 34.962 113.971 0.000 19.501 20.188
H:2 6.512 0.187 827.853 34.853 0.000 6.145 6.877

σ2
y 7.597

σ2
η 0.280

Intraclass corr 0.161

The LRT test can be used to evaluate the new model:

DF loglikel Chisq Pr(> Chisq) AIC
model 0 3.000 -2834.718 5675.436
model 1 4.000 -2442.237 784.963 0.000 4892.473

where
model 0: RTi = β0 + sbji + �i

whereas model 1 is the current model.
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An illustrative example
Model: parameter estimation and inference

sbj
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Dotplot for the estimated random-effect quantities of the model.
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An illustrative example
Model: parameter estimation and inference

R
T

H=1 H=2

1
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Observed data (in gray) and estimated means (horizontal dark straight lines) along with the random-effect
quantities (horizontal colored straight lines). Note that in the single-level model the random-effect quantities

increment or decrement the intercept β̂0 only (the slope is unaffected by random deviations).
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An illustrative example

Likewise for the standard Normal linear model, diagnostics and other graphical
explorations can be computed in order to assess the fitted model.

During the practical sessions of the course, we will learn further strategies to
deal with mixed-effect Normal linear models.
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Introduction to GLM
Source: 5.2.1, 5.2.2, 6.1.1, 6.2.1, 9.1.0 (Fox, 2016); 2.1, 2.2 (Faraway, 2014)

In the part A of the course the classical linear model can be summarized by:

Yi ∼ N (µi ,σ
2
i )

µi = β0 + xTi β

σ2
i = σ2

The following assumptions follow from the model definition:

linearity : E [Yi ] is a linear function of xi (i.e., E [Yi ] = g(xTi β) with g(.)
identity function);

homoscedasticity : σ2
i = σ2, i.e. constant variance for all the observations;

normality : the conditional distribution of the response variable Yi |xi is
Normal.
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Introduction to GLM
Source: 5.2.1, 5.2.2, 6.1.1, 6.2.1, 9.1.0 (Fox, 2016); 2.1, 2.2 (Faraway, 2014)

In the part A of the course the classical linear model can be summarized by:

Yi ∼ N (µi ,σ
2
i )

µi = β0 + xTi β

σ2
i = σ2

But these assumptions imply some constraints because:

linearity : we imposed that the relationship between E [Yi ] and xi is linear;

homoscedasticity : σ2 is constant for each observation.

normality : Yi ∼ N (), but many measurements are not normally
distributed.
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Introduction to GLM

In order to deal with these constraints we can adopt, for i.e., some trasformation.
Many measurements are log-normally distributed. This assumption implies that

Y ∼ logN (µ,σ2)

where logN indicated that Y is a log-normal random variabile. With easy trans-
formation we can obtain that

Y∗ = log(Y) ∼ N (µ,σ2)

But this transformation does not preserve, for example, the scale.

Other measurements cannot easily be led to follow a normal distribution after
a transformation. In these settings, we need to introduce the framework of
Generalized Linear Models (GLMs).
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Introduction to GLM

In order to infer the proper statistical model for a given response variable Y , we
use Generalized Linear Models (GLMs) which is a class of statistical models
including many probabilistic models (e.g., Normal, Poisson, Gamma) for different
response variables (e.g., continuous, counts, response times, . . .).

A Generalized Linear Model (GLM) is a flexible generalization of linear regression
that allows

non normality : Yi ∼ D(θ) where D(θ) is an appropriate probability
distribution which depends on the parameters vector θ;

non linearity : the relation between Yi and xi can be not linear ( i.e.,
E [Yi ] = g(xTi β) with g(.) that is a function called link function);

heteroscedasticity : magnitude of the variance of each measurement can
be a function of its predicted value (i.e. Var [Yi ] = φE [Yi ]).
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Introduction to GLM
Example 1: TEDDY Child Study

We considered a Study conducted by the University of Padua (TEDDY Child
Study, 2020) in which a sample of n = 675 children was assessed about the
amount of total difficulties measured among children aged 3-13 years old with
the SDQ questionnaire1 Question. SDQ scores normally distributed?
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1The Strengths and Difficulties Questionnaire (SDQ) is a brief behavioral screening questionnaire about
3-16-year-olds. The score is composed of the sum of behavioral indicators.
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Introduction
Example 2: TEDDY Child Study

The assumption of homoscedasticity can be violated. In this example there is a
linear relationship between y and x , but the variability increases with the values
of y. This is a clear example of heteroscedasticity.
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Question. Is the assumption of equal variance2 supported by this figure?

2This assumpiton implies that Var(Yi ) = σ2, ∀i
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Introduction
Example 3: TEDDY Child Study

In the previous example (675 children, TEDDY Child), the relationship can be
assumed to be linear with the children’s age?
This is a clear example of non linear relationship (in red the estimated linear,
and in blue the “non linear” trend).

20

40

60

80

5 10

Children Age (years)

C
h

ild
re

n
 w

e
ig

h
t 

(K
g

)

Question: Is linearity (and homoscedasticity) supported by this figure?
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GLM in a nut-shell (or almost)
Source: 15.1 (Fox, 2016)

A Generalized Linear Model (or GLM) consists of three components:

a random component, specifying the conditional distribution of the
response variable, Yi (for the i-th of n independently sampled
observations), given the values of the explanatory variables X in the
model;

a linear predictor ηi that is, a linear function of regressors

ηi = β0 + β1Xi1 + β2Xi2 + . . .+ βkXik ;

a smooth and invertible linearizing link function g() which transforms
the expectation of the response variable, µi = E [Yi ] to the linear
predictor in the following way

E [Yi ] = g(µi ) = ηi .
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GLM in a nut-shell (or almost): a random component
Source: 15.1 (Fox, 2016)

In Nelder and Wedderburn’s (1972) original formulation, the distribution of the
random variable Yi is a member of an exponential family, such as the Gaussian
(normal), Binomial, Poisson, gamma, or inverse-Gaussian families of distribu-
tions. The Exponential Distribution (ED) family can be express in the following
form:

p(yi ; θi ,φ) = exp
�θiyi − b(θi )

ai (φ)
+ c(yi ,φ)

�

with yi is the observation, while θ is called natural parameter and φ is the
dispersion parameter. Specifying the expression of the functions a(), b(), and
c() obtains a particular parametric model.

This part will not be covered in depth. We focus our attention on two particular
EDs: the Binomial and Poisson distribution.
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GLM in a nut-shell (or almost): a random component
Example 1

We simulated N=100 observations by a Poisson with mean/average parameter
θ = µ = 3.

Yi ∼ Poisson(µ = 3)

for i=(1,2,...,100). Here the results

Number 0 1 2 3 4 5 6 7 8

Frequency 2 14 21 31 14 10 4 2 2

and a barplot of the frequencies
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GLM in a nut-shell (or almost): a random component
Example 2

We simulated N=100 observations by a Bernoulli variable with parameter θ =
π = 0.3.

Yi ∼ Bernoulli(π = 0.3)

for i=(1,2,...,100). Below the results .

Number 0 1

Frequency 68 32

The estimated π̂ = 32
100

= 0.32 and a barplot of the frequencies
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GLM in a nut-shell (or almost): a random component
Example 3

We simulated N=100 observations by a Binomial variable with parameter θ =
π = 0.3 and n = 20.

Yi ∼ Binomial(π = 0.3, n = 20)

for i=(1,2,...,100). Below the results .

2 3 4 5 6 7 8 9 10

1 7 22 23 20 12 4 7 4

The estimated ȳ =
�20

i=1 yi
n

= 565
100

= 5.65, π̂ = 5.65/20 = 0.2825 and a barplot
of the frequencies
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GLM in a nut-shell (or almost): a linear predictor

A linear predictor is a linear function of regressors

ηi = β0 + β1Xi1 + β2Xi2 + . . .+ βkXik

that are summed together in an additive form.

As in linear models, the regressors Xik are prespecified functions of the explana-
tory variables and therefore may include quantitative explanatory variables, trans-
formations of quantitative explanatory variables, polynomial or regression-spline
regressors, dummy regressors, interactions, and so on.

The novelty is that ηi is not directly connected to the E [Yi ], but...
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GLM in a nut-shell (or almost): a link function

... the linear predictor is connected to the expectation of the response variable,
µi = E [Yi ] employing the link function g() with respect to ηi as follows

g(µi ) = ηi = β0 + β1Xi1 + β2Xi2 + . . .+ βkXik

Because the link function is invertible, we can also write

µi = g−1(ηi ) = g−1(β0 + β1Xi1 + β2Xi2 + . . .+ βkXik).

The inverse link g−1() is also called the mean function.
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GLM in a nut-shell (or almost): a link function

The link function permits to trasform the values of the linear predictor ηi in to
the range of the response variables.
Example
If the response Yi is a count, taking on only non-negative integer values, 0, 1,
2,., and consequently µi is an expected count, which (though not necessarily an
integer) is also nonnegative, the log function is a link function because maps µi

to the whole real line as follows:

log(µi ) = ηi = β0 + β1Xi1 + β2Xi2 + . . .+ βkXik

for example if we considered µ = g−1(η) = exp(η) = exp(βX )
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GLM in a nut-shell (or almost): the canonical link

The range of variation of the response variable (in the Bernoulli or Binomial
variable: (0, 1), in the Poisson distribution: 0,1,2, etc... ) identified in each
family a so-called canonical (or “natural”) link function associated with each
family.

The canonical link simplifies the GLM, but other link functions may be used as
well.

Family Canonical Link g() Range of Yi Var(Yi |η)
Gaussian Identity Identity (−∞,+∞) φ = σ2

Binomial Logit() (0,1) µi (1− µi )
Poisson Log() 0,1,2, . . . µi

Gamma Inverse (0,∞) φµ2
i

Inverse-Gaussian Inverse (0,∞) φµ3
i
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Models for Dichotomous Data
Source: 14.1 (Fox, 2016)

This part introduces the generalized linear model for binary response variables.
Dichotomous data treated the presence or the absence of a characteristic in our
statistical units (a disease, the gender, the presence of child, . . .).

However the probability distribution for dichotomous data can derived by a
Bernoulli distribution

Y ∼ Be(π)

where Y can assume values of 0 or 1, the probability to observe 1 is π (in fact
E [Y ] = Pr(Y = 1) = π)

We use to thinking of regression as a conditional average. Does this interpreta-
tion make sense when the response variable is dichotomous?

Paolo Girardi University of Padova

PSQ1096299 - Second Part Models for Dichotomous Data 20/108



Models for Dichotomous Data
Source: 14.1 (Fox, 2016)

After all, an average between 0 and 1 represents a “score” for the dummy re-
sponse variable that cannot be realized by any individual. In particular we are
interested on a conditionated probability as follows

E [Y |xi ] = Pr(Y = 1|X = xi )

with

E [Y |xi ] = πi ∗ 1 + (1− πi ) ∗ 0 = πi

πi is the probability to have Y = 1 given X = xi for the observation i .
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Models for Dichotomous Data: a linear probability model

To understand why these models are required, let us begin by examining a rep-
resentative problem, attempting to apply linear least-squares regression to it.

In the TEDDY Child Study, we asked the participants (mothers of a young child)
about the presence of post-partum depression and we measured the parental
stress3.
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3PSI-Parenting Stress Index, 4th Edition
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Models for Dichotomous Data: a linear probability model

The Linear-Probability Model
As a first effort, let us try linear regression with the usual assumptions:

Yi = β0 + βXi + εi

where εi ∼ N (0,σ2) and incorrelated (cor(εi , εj) = 0 ∀ i �= j).
Since Yi can assume a value of 0 or 1, its expection E [Y ]=µ = π and

πi = β0 + βXi

For this reason, the linear-regression model applied to a dummy response variable
is called the linear probability model. But in this formulation, the errors can
assume a series of values that depends on πi :

εi |Yi =

�
if Yi = 1 we have εi = 1− E [Yi ] = 1− πi

if Yi = 0 we have εi = 0− E [Yi ] = −πi

The assumption of εi ∼ N() is clearly violated since πi ∈ (0, 1) and the error
can’t take any values in the real line.
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Models for Dichotomous Data: a linear probability model

The Linear-Probability Model
The variance of εi is

Var(εi ) = πi (1− πi )

which depends on the value of πi leading to a clear constraint againt the poten-
tiral presence of heteroskedasticity.
In addition, in the linear form of the model

πi = β0 + βXi

β0 + βXi is not limited to take values between (0, 1) and values outside the
range are permitted. One solution to the problems of the linear-probability
model —though not a good general solution— is simply to constrain π to the
unit interval while retaining the linear relationship between π and X within this
interval:

π|Xi =





0 if β0 + βXi < 0

β0 + βXi if β0 + βXi ∈ [0, 1]

1 if β0 + βXi > 1
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Models for Dichotomous Data: a linear probability model

The Linear-Probability Model
For the previous data, the estimated model is the following4.

Table: Estimated linear probability model

Dependent variable:

depression n

parent stress 0.006∗∗∗
(0.001)

Constant −0.231∗∗∗
(0.071)

Observations 429

R2 0.059

Adjusted R2 0.056
Residual Std. Error 0.325 (df = 427)
F Statistic 26.601∗∗∗ (df = 1; 427)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

For each 1-point increase in its score, an increase in the probability of depression
was estimated at 0.006 points (s.e. 0.001, p-value<0.01).

4estimated with the comand lm() in R software
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Models for Dichotomous Data: a linear probability model

The Linear-Probability Model
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A low probability of depression with low parental stress, while moving to
high value of parentals stress index the probability increased up to 50%.
Is the model correct?
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Models for Dichotomous Data: a logistic model

Transformations of π: Probit and Logit Models
A central difficulty of the unconstrained linear-probability model is its inability
to ensure that π stays between 0 and 1. We need a positive monotone (i.e.,
nondecreasing) function that maps the linear predictor η to the interval [0,1].

Any Cumulative Probability Distribution function (CDF) meets this requirement,
and we define P() as a selected CDF.

πi = P(ηi ) = β0 + βXi

where P() is the so called mean function g−1() previously described.
If P() is the CDF of a normal standard distribution N (0, 1), Φ(), the model is
called linear probit model:

πi = Φ(ηi ) = β0 + βXi

.
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Models for Dichotomous Data: a logistic model

Another function g−1() which ensures that π stays between 0 and 1 is called
logistic function

Λ(z) =
1

1 + e−z

where e is the Euler’s number= 2.718.
The function Λ(z) is applied to the linear prediction η obtaining

πi = Λ(ηi ) = β0 + βXi .

The model is called linear logistic model or linear logit model:

πi =
1

1 + e−(β0+βXi )
.

The logistic function or logit is the canonical link function for the binomial
regression.
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Models for Dichotomous Data: a logistic model

The probit and the logistic function are very similar. It is also clear from this
graph that both functions are nearly linear over much of their range, say between
about π=0.2 and π=0.8.
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Why is convenient to use the logistic (or logit) specification?
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Models for Dichotomous Data: a logistic model

Despite their essential similarity, there are two practical advantages of the logit
model compared to the probit model:

The equation of the logistic CDF is very simple, while the normal CDF
involves an unevaluated integral.

More important, the inverse linearizing transformation for the logit model,
Λ−1(), is directly interpretable as a log-odds (log π

1−π
):

Λ−1(πi ) =
πi

1− πi
= exp(β0 + βXi )

To make it clear here a simple table with values of π, odds and Log Odds:

π odds= π
1−π

Log(odds)

0.01 0.0101010 -4.595120

0.05 0.0526316 -2.944439

0.20 0.2500000 -1.386294

0.50 1.0000000 0.000000

0.80 4.0000000 1.386294

0.95 19.0000000 2.944439

0.99 99.0000000 4.595120
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Models for Dichotomous Data: a logistic model

The probit link does not provide the same good features of the logit specification.
In particular, the logit model is a linear, additive model for the log odds, but it
is also a multiplicative model for the odds:

πi

1− πi
= exp(β0 + βXi ) = exp(β0)exp(βXi ) = eβ0(eβ)Xi

So, increasing X by 1 changes the logit by β and multiplies the odds by eβ .

This trasformation of the coefficient β, (eβ), is called Odds Ratio and it is
closely related to a variation of the probabilty of π by 1-points increase of X.

[π|X = (x + 1)− π|X = x ] = Δπ ≈ (eβ)

To better understand this meaning, we compare the results of the linear prob-
ability model with the linear logit model on the data about parental stress and
post-partum depression.
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Models for Dichotomous Data: a logistic model

From the previous application...
The linear probability model estimats these coefficients between Y and X

πi = −0.231 + 0.006X

For each increase of 1-point of parental stress index (X ) the absolute probability
of postpartum depression increases by 0.006, in the percentage of 0.6%.

If we use the linear logistic model we impose this equation to the data

πi

1− πi
= exp(β0 + βXi )

Where the values of β and the related Odds ratio =eβ . The Odds Ratio is the
increase in the relative probabilty due the increase of 1 points of x.
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Models for Dichotomous Data: a logistic model

The estimates of the parameter β = (β0,β)
5 is commonly perfomed by a Maxi-

mum Likelihood Estimator (MLE) as following:

(β) = max
β

L(β, y , x)

where the likelihood L(β,Y ,X ) is formed by the product of each conditional
probability

L(β, y , x) =
n�

i=1

Pr(Y |X = x)

and, using the probability density of a Bernoulli variable, we obtain that

L(β, y , x) =
n�

i=1

(πi |X = x)yi (1− πi |X = x)1−yi

where with a logit link we obtain

(πi |X = xi ) =
1

1− e−(β0+βxi )

.
5This formula can easily be extended to k regressiors β = (β0, β1, . . . , βk )
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Models for Dichotomous Data: a logistic model

At the end, jumping some intermediate steps, the estimation of the parameters
was perfomed by the maximization of the log-likelihood �(β, y , x)

(β̂) = maxβ �(β, y , x)
=

�n
i=1[yi log(πi |X = x) + (1− yi ) log(1− πi |X = x)]

The solution is a system not linear in the parameter

��n
i=1(yi − πi |X = xi ) = 0 (for the solution of β0)�n
i=1(yi − πi |X = xi )xi = 0 (for the solution of β)

The solution can be derived using iterative methods.
(Newton-Raphson like methods (see. paragraph 14.1.5 for details))
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Models for Dichotomous Data: a logistic model

Hypothesis tests and confidence intervals follow from general procedures for
statistical inference in maximum-likelihood estimation

The asyntotic distribution of B ∼ N (β̂, I−1(β),

where I−1(β) = E
�
∂2�(β0,β)
∂β0∂β

�
is the Fischer information matrix.

B is the minimum variance unbiased estimator (MVUE)

Given this distribution, the associated hypothesis test (Wald test)

�
H0 : β = 0;

H1 : β �= 0;

Can be performed to test the association between Y and X
The test statistic W = B−0

s.e.(B)
∼ N(0, 1)

And if we use the fitted values | β̂

s.e.(β̂)
|≥ z1−α/2, define the usual test of

significance against the null hyphotesis
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Models for Dichotomous Data: a logistic model

It is also possible to formulate a Likelihood-Ratio Test (LRT) for the hypothesis
that several coefficients are simultaneously equal to 0. If we consider the following
model with 2 regressors X1 and X2:

- model 1: logit(π) = β0 + β1X1 + β2X2

The system of hypothesis
�
H0 : β1 = β2 = 0;

H1 : β1 or β2 �= 0;

Can be solved by fitting a NULL model (model 0) with the only intercept

- model 0: logit(π) = β0 + 0 ∗ X1 + 0 ∗ X2

- model 0: logit(π) = β0

.
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Models for Dichotomous Data: a logistic model

The likelihood ratio test (LRT) statistic used the likelihood of the model 1 (L1)
and of the null model (L0) for the null hypothesis. The LRT can be conducted
with a simple difference between the log-likelihood of the two models:

G 2
0 = 2(logL1 − logL0)

Under the null hypothesis, this difference G 2
0 follows a χ2 distribution (in this

case 2 degrees of freedom).

G 2
0 (q) ∼ χ2

q

As derived before, the degree of freedom was defined by the number of null
coefficients between the two models.
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Models for Dichotomous Data: a logistic model

By comparing logL0 for the model containing only the constant (β0) to the
logL1 for the full model, we can measure the degree to which using the ex-
planatory variables improves the predictability of Y. The quantity pseudo-R2 is
a generalization of the residual sum of squares for a linear model (called also
Nagelkerke R2).
Thus,

pseudo-R2 =
G 2

1

G 2
0

= 1− logL1

logL0

is analogous to R2 for a linear model and it ranges between 0 and 1.
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Models for Dichotomous Data: a logistic model
Considering a logistic model for assessing the relationship between depression
and parental stress index

Table: Estimated linear logistic model

Dependent variable:

depression n

parent stress 0.042∗∗∗
(0.009)

Constant −4.699∗∗∗
(0.639)

Observations 429
Log Likelihood −153.496
Akaike Inf. Crit. 310.992

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In this model the effect was statistically significant

Woss =
β̂

s.e.(β̂)
==

0.042

0.009
= 4.7

which implies a p-value � 0 << 0.05.
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Models for Dichotomous Data: a logistic model

The estimated model is the following

logit(πi , xi ) =
πi

1− πi
= exp(−4.7 + 0.042xi )

The estimated slope coefficient β̂=0.042.

The Odds Ratio is exp(0.042)=1.043 which gives us the information that each
1-point increase in parental stress index implies an increase in the relative prob-
ability of the post-partum depression of 4.3%.
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Models for Dichotomous Data: a logistic model
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We reported some differences between the two estimated lines.
Paolo Girardi University of Padova

PSQ1096299 - Second Part Models for Dichotomous Data 41/108

Models for Dichotomous Data: a probit model

The Logit specification for the binomial model is a common way to ensure that
π belongs to the values [0,1].
As previously presented an alternative link is provided by any other CDF of a
random variable (probit link).
The relationship between the probability of Y to assume the value 1 (Pr(Yi =
1) = πi ) and the regressor Xi si the following:

Pr(Yi = 1) = πi = Φ(β0 + βXi ),

where Φ() is the CDF of a standard normal distribution (∼ N (0, 1)).
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Models for Dichotomous Data: a probit model

The results resulted by two different link in the binay regression (between logit
and probit) are similar!

Table: Estimates of logistic and probit model

Dependent variable:

depression n

logistic probit

(1) (2)

parent stress 0.042∗∗∗ 0.023∗∗∗
(0.009) (0.005)

Constant −4.699∗∗∗ −2.683∗∗∗
(0.639) (0.349)

Observations 429 429
Log Likelihood −153.496 −153.415
Akaike Inf. Crit. 310.992 310.831

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The estimated value for β̂ = 0.023 indicates that each 1-point increase in the X
implies an increase of 0.023 point in the z scale value.
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Models for Dichotomous Data: a probit model

The direction indicates a positive effect of the parenting stress on depression,
but the interpretation can be only evaluated in terms of effect size*.

Example
(+10 pt increase: β̂ ∗ 10 = 0.023 ∗ 10 = 0.23 which is a low effect size).
(+20 pt increase: β̂ ∗ 20 = 0.023 ∗ 20 = 0.46 which is a moderate effect size).

*In statistics, an effect size is a number measuring the strength of the relation-
ship between two variables in a population. In this case, measure the strength
of the relationship between parental stress and depression.
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Models for Dichotomous Data: to summarize

probit and logit models lead to the same results in terms of goodness of fit

the logit model allows to write πi in a closed-form

the logit model can be easily interpreted in terms of Odds Ratio

the probit model is more difficult to estimate

the linear probability model is the most simple, but not correctly specified
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Models for Dichotomous Data: to summarize

The dichotomous logit model can be fit to data by the method of
maximum likelihood.

Wald tests and likelihood-ratio tests for the coefficients of the model
parallel t-tests and

Incremental F-tests for the general linear model.

The deviance for the model, defined as G 2 = 2 logL(β̂) connected to the
maximized log-likelihood can be used to calculate a pseudo R2 which is
the analogous of the residual sum of squares for a linear model.
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Models for Dichotomous Data: a latent variable

An alternative derivation of the logit or probit model posits an underlying regres-
sion for a the continuous but unobservable response variable Ei (representing,
e.g., the “propensity” to vote to get vaccinated (as an example)), scaled so that

Yi =

�
0 when Ei ≤ k

1 when Ei>k

with k being an unknown threshold value. The model becomes the following

Ei = β0 + βXi − εi

where �i is the traditional regression model. Since Ei is not observed (we have
the values of only Yi ) the equation can be expressed as

Pr(Yi = 1) = Pr(Ei>k) = Pr(β0 + βXi − εi>k)

Or better
Pr(β0 + βXi>k + εi )
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Models for Dichotomous Data: a latent variable

Fixing as an example k=0 and imposing εi ∼ N (0, 1)

Pr(β0 + βXi>εi ) = Φ(β0 + βXi )

which is the probit model.

Alternatively, if the εi follows the logistic distribution, then we get the logit
model

Pr(β0 + βXi>εi ) = Λ(β0 + βXi )

We will have occasion to return to the unobserved-variable formulation of logit
and probit models when we consider models for ordinal categorical data (but not
in this course).
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Models for Dichotomous Data: a guided analysis

The Space Shuttle Challenger disaster was a fatal accident in the United States’
space program that occurred on January 28, 1986,

The failure was caused by the failure of the two redundant O-ring seals used
in the joint, in part because of the unusually cold temperatures at the time of
launch.
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Models for Dichotomous Data: a guided analysis

However, engineers and scientists had conducted n=23 tests as reported mea-
suring the temperature and the fail.

temp fail
4/12/81 66 0
11/12/81 70 1
3/22/82 69 0
11/11/82 68 0
4/4/83 67 0
6/18/83 72 0
8/30/83 73 0
11/28/83 70 0
2/3/84 57 1
4/6/84 63 1
8/30/84 70 1
10/5/84 78 0

temp fail
11/8/84 67 0
1/24/85 53 2
4/12/85 67 0
4/29/85 75 0
6/17/85 70 0
7/29/85 81 0
8/27/85 76 0
10/3/85 79 0
10/30/85 75 2
11/26/85 76 0
1/12/86 58 1

The space shuttle Challenger was cleared to launch at 11:38 a.m. EST, with an
air temperature of 36 Fahrenheit degrees (2 Celsius degrees).
To establish if the temperature influenced the probability of an O-ring fail, the
NASA scientist took only fails data because they said that data of working tests
are “not informative”.
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Models for Dichotomous Data: a guided analysis

The analysed dataset becomes formed by 7 observations

temp fail
11/12/81 70 1
2/3/84 57 1
4/6/84 63 1
8/30/84 70 1
1/24/85 53 2
10/30/85 75 2
1/12/86 58 1

and the analysis was conducted by means of a simple linear models

number of fails(Yi ) = β0 + β temperature(X ) + ε
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Models for Dichotomous Data: a guided analysis

Questions

Is this model appropriate? (is Y normallly distributed?)

Do they have discarded useful information? (is ”no fails” info irrelevant?)

The results were the following

Table: Estimated simple linear model

Dependent variable:

fail

temp 0.001
(0.027)

Constant 1.195
(1.715)

Observations 7

R2 0.001

Adjusted R2 −0.199
Residual Std. Error 0.534 (df = 5)
F Statistic 0.003 (df = 1; 5)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The conclusion led that temperature
did not influence the number of fails.
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Models for Dichotomous Data: a guided analysis

Considering the following logistic model we have

Pr(fails a the test i > 0) = πi = Λ(β0 + β ∗ Temperature(X ))

allowing us to consider the probability to have a fail in the regression and the
entire dataset. The results of the estimated linear logistic model are the following

Table: Estimated linear logistic
model

Dependent variable:

I(fail >0)

temp −0.232∗∗
(0.108)

Constant 15.043∗∗
(7.379)

Observations 23
Log Likelihood −10.158
Akaike Inf. Crit. 24.315

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The temperature has a negative
influence on the probability to have a
fail (low temperature, high probability
of fail).
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Models for Dichotomous Data: a guided analysis

The results of the logistic regresison reported that the estimated value for β̂ =
−0.23 with a p-value <0.05 (0.032).

The Odds Ratio is exp(0.23)=0.79 that reported a protective effect of the tem-
perature on the probability of failure. In particular, each 1-degree increase de-
creases the probability of fails by 21% (1-0.79).

The model estimated with a temperature of 36 Fahrenheit degrees a probability
of failure of:

Λ(15.00− 0.23 ∗ 36) = 0.99871 = 99.871%
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Models for Counts: a gentle introduction
Source: 15.2 (Fox, 2016)

In this section we are interested to model data that are based on counts.
Counts is evereything that has a support among integer numbers as:

Sy = (0, 1, 2, 3, 4, . . .)

What kind of characteristics has this kind of distribution?
Example: number of events, goals, errors, waiting time, etc...

However, these models have many applications, not only to the analysis of counts
of events but also in the context of models for contingency tables and the analysis
of survival data.
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Models for Counts: a gentle introduction
Source: 15.2 (Fox, 2016)

The basic GLM for count data is the Poisson regression model with
the log link. However, the Poisson regression is not the unique
type of regression used to model counts. Alternative approaches:

Negative binomial regression;

Ordinal logistic regression (or proportional odds regression);

Zero Inflated models;

Truncated models;

Bounded regression;

...
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Models for Counts: a gentle introduction
Source: 5.1 (Faraway, 2014)

The Poisson random variable distribution assigns a probability to each integer
number in this way:

Y ∼ Poi(µ)

Pr(Y = y ;µ) =
e−µµy

y !

With y = 0, 1, 2, 3, . . .. The parameter µ ∈ �+ s the expected number of events
E [Y ] = µ that is also equal to the variance Var [Y ] = µ. Below probability
value for Y(µ) for µ equal to 1, 5 and 10.
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The Poisson regression model

We are aimed to assess if a regressor (X) has an influence on the number of
counts (Y).
We suppose that yi is a realization of a Poisson random variable Yi with param-
eter µi which may vary according to the values of X.

Yi ∼ Pois(µi )

We need some way to link the µi to the xi .
As previously done in the binomial regression, a linear combination of the xi form
the linear predictor ηi = Xiβ

T and in order to ensure µi > 0 we apply a log
link function.
The Poisson regression model can be defined as:

log(µi ) = ηi = β0 + βXi

where µi is the parameter of the Poisson random variable Yi .
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The Poisson regression model

In this setting the previous formula is equlivalent to this

µi = exp(ηi ) = exp(β0 + βXi ) = exp(β0)exp(β)
Xi

denoting that the variation due to a unit change on xi is proportional to exp(β).

Replacing µi in the probability formula we obtain

Pr(Y = yi ;µi ) =
e−µiµyi

i

yi !
=

e−(exp(β0+βXi )(exp(β0 + βXi ))
yi

yi !

In this way the mean parameter µ is replaced by a function of the regression
parameters β0 and β. We have to estimate a value for β0 and β, how to do
that?
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The Poisson regression model

We use the Maximum Likelihood Estimator (MLE) to estimate the coefficient
parameters. In particular, after some intermediate steps, we obtain that the
log-likelihood for the Poisson regression model is the following:

�(β̂, y, x) =
n�

i=1

(yi (β0 + βxi )− exp(β0 + βxi )− log(yi !))

The estimates for β̂0 and β̂ can be derived differentiating with respect to β0 and
β resorting to numerical methods to find a solution (as previously seen for the
binomial regression).
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The Poisson regression model

Interpretation of the coefficients β0 and β.

β0 is the intercept: exp(β0) is the expected mean µ in absence of the
effect of the variable X or however when X=0;

β is the slope coefficient. If X is continuous, each 1-point increase is
related to an increase of µ equal to exp(β). In the Poisson Regression
model is common to express the influence of the coefficients by means of
Incidente Rate Ratio (IRR) that is the exp(β). (IRR=exp(β)).

IRR(β) =





if > 1 we have a positive influence of X on Y

if � 1 we do not have influence of X on Y

if < 1 we have a negative influence of X on Y
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The Poisson regression model
An example: AIDS dataset

Whyte, et al 1987 (Dobson, 1990) reported the number of deaths due to AIDS
in Australia per 3 month period from January 1983 – June 1986 with a total of
20 observations. (the dataset was inside the R packages dobson ).

year 1984 1984 1984 1984 1985 1985 1985 1985 1986 1986
quarter 1 2 3 4 1 2 3 4 1 2
cases 1 6 16 23 27 39 31 30 43 51

year 1986 1986 1987 1987 1987 1987 1988 1988 1988 1988
quarter 3 4 1 2 3 4 1 2 3 4
cases 63 70 88 97 91 104 110 113 149 159

Question research: Is there any relationship between the number of AIDS cases
and time?
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The Poisson regression model
An example: AIDS dataset
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The number of AIDS cases is increasing. Can I apply the linear regression model
in this case? Yes, but
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The Poisson regression model
An example: AIDS dataset

Table: Estimated linear model

Dependent variable:

cases

time 30.614∗∗∗
(1.621)

Constant −60,752.060∗∗∗
(3,219.706)

Observations 20

R2 0.952

Adjusted R2 0.949
Residual Std. Error 10.448 (df = 18)
F Statistic 356.801∗∗∗ (df = 1; 18)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The model estimates an increase of
30.6 cases per year.

The model appears good, but what’s wrong? Almost three things...
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The Poisson regression model
An example: AIDS dataset
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What’s wrong? Almost three things...
- 1) The expected number of AIDS cases in the year 1984 is below 0 (-7.15)
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The Poisson regression model
An example: AIDS dataset
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What’s wrong? Almost three things...
- 1) The expected number of AIDS cases in the year 1984 is below 0 (-7.15)
- 2) The increase is not so linear with the time
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The Poisson regression model
An example: AIDS dataset
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What’s wrong? Almost three things...
- 1) The expected number of AIDS cases in the year 1984 is below 0 (-7.15 )
- 2) The increase is not so linear with the time
- 3) We are modelling counts, but linear models implies Y ∼ N (µ,σ2)
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The Poisson regression model
An example: AIDS dataset

Some indications are provided by the residual analysis
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The Poisson regression model
An example: AIDS dataset

For this data we estimate a Poisson regression model for the variabile Yt=AIDS
cases at the time t as follows

log(µt) = β0 + βt

where t is the time and Yt ∼ Poi(µt).

Table: Estimated Poisson model

Dependent variable:

cases

time 0.517∗∗∗
(0.022)

Constant −1,023.000∗∗∗
(44.400)

Observations 20
Log Likelihood −82.700
Akaike Inf. Crit. 169.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The model estimates an increasing
trend (but not linear).
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The Poisson regression model
An example: AIDS dataset

Table: Estimated Poisson model

Dependent variable:

cases

time 0.517∗∗∗
(0.022)

Constant −1,023.000∗∗∗
(44.400)

Observations 20
Log Likelihood −82.700
Akaike Inf. Crit. 169.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The model estimates an increasing
trend (but not linear).

The estimated coefficient β̂=0.517 (>0) reported a increasing trend.
The IRR index = exp(0.517 )=1.677 (>1) gives us the information that we
registered an increase of 67.7% of cases per year.
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Poisson regression model for contigency tables

When the explanatory variables—as well as the response—are discrete, the joint
sample distribution of the variables defines a contingency table of counts: Each
cell of the table records the number of observations possessing a particular com-
bination of characteristics.
Let us consider the following dataset (dataset drugpsy, R package faraway)

y diagnosis drug
105 Schizophrenia yes
12 Affective.Disorder yes
18 Neurosis yes
47 Personality.Disorder yes
0 Special.Symptoms yes
8 Schizophrenia no
2 Affective.Disorder no

19 Neurosis no
52 Personality.Disorder no
13 Special.Symptoms no

The data contains a sample of 276 psychiatry patients classified by their diagnosis
and whether drug treatment was prescribed. In this case the frequency (the
number of patients who meet the two characteristics (diagnosis and drug).
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Poisson regression model for contigency tables

This dataset can be obtained by the following original one:

ID Diagnosis drug presence
1 Neurosis yes

2 Personality.Disorder yes

3 Schizophrenia no

4 Special.Symptoms no

5 Neurosis yes

6 Personality.Disorder no

where Y is the number of patients in each combination of diagnosis and drug.
The combination of the modality of diagnosis (5) and drug (2) defines the length
of my dataset derived from the contingency tables (5x2=10).
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Poisson regression model for contigency tables

The application of the Poisson regression model is quite simple. In this special
case it is called also “log-linear” model. The related contingency 2x5 tables is

Schizophrenia Affective.Disorder Neurosis Personality.Disorder Special.Symptoms
yes 105 12 18 47 0
no 8 2 19 52 13

The expected counts µij depends on the row (drug) (i) and on the column
(diagnosis)(j).

log(µij) = ηij = µ+ αi + βj

where µ is the overall mean, αi is the effect of the drug and βj is the effect of
the diagnosis.

In this formulation is, under independence, the log expected frequencies ηij de-
pend additively on the logs of the row marginal expected frequencies, the column
marginal expected frequencies, and the sample size.
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Poisson regression model for contigency tables

We can add parameters to extend the loglinear model to data for which the row
and column classifications are not independent in the population but rather are
related in an arbitrary manner:

log(µij) = ηij = µ+ αi + βj + γij

leading to a saturated model, in fact, the number of independent parameters is
equal to the number of cells in the table
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Poisson regression model for contigency tables

In the log-linear model, we are not interested in the find if a regressor is sta-
tistically relevant (or significant). We are interested in the simplest model that
influenced the observed counts To choose the best model we adopted an ANOVA
test based on the Likelihood Ratio Test (LRT) on nested models.
Analysis of Deviance Table
Model 1: ηij = µ+ αi + βj + γij ; In R: y ∼ drug * diagnosis (saturated model)
Model 2: ηij = µ+ αi + βj ; In R: y ∼ drug + diagnosis
Model 3: ηij = µ+ αi ; In R: y ∼ drug
Model 4: ηij = µ+ βj ; In R: y ∼ diagnosis
Model 5: ηij = µ; In R: y ∼ 1 (null model)

Model Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Model 1 0 0.000 - - -
Model 2 4 96.537 -4 -96.537 <0.001
Model 3 8 268.499 -4 -171.962 <0.001
Model 4 5 125.091 3 143.408 <0.001
Model 5 9 297.053 -4 -171.962 <0.001

We conclude that both drug and diagnosis (and their interaction) reported an
influence on the number of patients.
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Overdispersion

The GLM regression is more flexible than the standard LM regression. How-
ever, depending on the underlying distribution probability there is a connection
between the expected mean E [Y|X ] and the variance Var(Y|X ).
In fact, for example:

Poisson regression: E [Yi |Xi ] = Var(Yi |Xi ) = µi .

Logistic regression: E [Yi |Xi ] = πi while Var(Yi |Xi ) = πi (1− πi ) implying
that Var(Yi |Xi ) = E [Yi |Xi ] (1− E [Yi |Xi ]).

If the GLM regression fits the data reasonably, we would expect the residual
deviance to be roughly equal to the residual degrees of freedom. In fact, under
the Null Hypothesis (no other regressors influenced the relationship between Y
and X or the null-model is prefered)

Dres = 2(logLk − logL0) ∼ χ2
n−k

where Lk is the likelihood of the model with k regressors, while L0 is the likelihood
with only the intercept
It follows that E

�
χ2
n−k

�
= n − k and n-k is the residual degrees of freedom.

Paolo Girardi University of Padova

PSQ1096299 - Second Part Models for Overdispersed Data 76/108

Overdispersion - Quasi Poisson

If the residual deviance is so large suggests that the conditional variance of the
expected number of interlocks exceeds the variation of a Poisson-distributed
variable, for which the variance equals the mean. This common occurrence in
the analysis of count data is termed overdispersion.

A simple remedy for overdispersed count data is to introduce a dispersion pa-
rameter into the Poisson model, so that the conditional variance of the response
is now

Var(Yi |Xi ) = φµi

with (φ > 1)6

Nevertheless, the usual procedure for maximum-likelihood estimation of a GLM
yields the so-called quasi-likelihood estimators of the regression coefficients.

6Although it is much less common, it is also possible for count data to be under dispersed—that is, for the
conditional variance of the response to be less than the mean.
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Overdispersion - Quasi Poisson

Important feautures:

The Quasi-Poisson model yields to the same estimates (β̂) of the Poisson
model;

The unique variation is in the standard error which are increased of φ1/2

(s.e(β) ∗ φ1/2);

The inflation of the standard errors implies a lower statistical significance
of the parameters.

In the quasi-Poisson model, the dispersion estimator takes the form

φ̂ =
1

n − k − 1

(Yi − µ̂i )
2

µ̂i

where µ̂i = g(η̂i )
−1
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Overdispersion - Quasi Poisson

An example is provided by the recent COVID-19 epidemic. We analyse the first
25 days of the epidemic in Italy with the following model

E [Yi ] = µi = g(η)−1 = exp(β0 + βXi )

with Yi the n. of new COVID-19 cases; Xi the day after the epidemic outbreak.

Table: Estimated Poisson model

Dependent variable:

new positive

day 0.141∗∗∗
(0.001)

Constant 5.103∗∗∗
(0.018)

Observations 25
Log Likelihood −1,004.689
Akaike Inf. Crit. 2,013.377

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The model estimates an increasing
trend.
IRR=exp(β̂)=exp(0.141)=1.15.
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Overdispersion - Quasi Poisson

We evalute the presence of overdispersion:

The model reported a Residual deviance of 1792.9 on 23 degrees of
freedom

The Deviance residuals (we will see them in the next part) appears to
have tails too heavy respect to the normal distribution
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We estimated a Quasi-Poisson model, allowing the estimation of an over-dispersion
parameter φ.
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Overdispersion - Quasi Poisson

Table: Estimated Quasi-Poisson
models

Dependent variable:

new positive

day 0.141∗∗∗
(0.008)

Constant 5.103∗∗∗
(0.154)

φ 75.291∗∗∗

Observations 25

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The dispersion parameter φ was estimated to be equal to φ̂ =75.291 (too
different from 1). The standard errors of the estimates were increased by√
75.291 = 8.68 times.
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Overdispersion - Quasi Binomial

The same method can be applied to the logistic model for binary regression.
Considering the famous IRIS dataset, we want to explore if the length of the
sepals discriminates between the species versicolor and the others. The model is

E [Yi ] = πi = g(η)−1 = exp(β0 + βXi )

with Y=1 if versicolor and 0 otherwise; X is the sepal width.
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Overdispersion - Quasi Binomial

The same method can be applied to the logistic model for binary regression.
Considering the famous IRIS dataset, we want to explore if the length of the
sepals discriminates between the species Versicolor and the others. The model
is

E [Yi ] = πi = g(η)−1 = exp(β0 + βXi )

with Y=1 if Versicolor and 0 otherwise; X is the sepal width.

Table: Estimated logistic model

Dependent variable:

versicolor

Sepal.Width −3.220∗∗∗
(0.637)

Constant 8.890∗∗∗
(1.870)

Observations 150
Log Likelihood −76.000
Akaike Inf. Crit. 156.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The model a inverse relationship
OR=exp(β̂)=exp(-3.222)=0.04.
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Overdispersion - Quasi Binomial

The residual deviance is equal to

Devres = 2(logL(β̂)− logL0) = 151.93

The number of residual degrees of freedom is 149.
To test if the presence of overdispersion is justifiable we can test if the observed
residual deviance is a plausible value for a χ2
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Resdev = 151.93

P-value=Pr(χ2
149 > 151.93)=0.417 >0.05

In this case the presence of overdispersion is not supported.
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Variable Selection and Hypothesis Test

In real settings, we want to evaluate influence of a set of regressors X =
(X1,X2, . . . ,Xk) on a dependent variable Y

log(µ) = η = β0 + β1X1 + β2X2 + · · ·+ βkXk

However, not all the variables may have a significant effect on the Y.

How I can select variables most (statistically) influential?

This can be solved by Hypothesis Tests (Faraway: 15.3.3 ): Analysis of Deviance
and correlated tests.
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Variable Selection and Hypothesis Test

We define the log-likelihood for a GLM as a function logL(µ; y) where µ is the
parameter of the related probability function Y ∼ D(µ). We can rewrite the
log-likelihood in function of the parameters connected to g(µ) = XTβ

logL(β; y) = �(β; y)

where β is the vector of parameters of length k of k relative regressors (intercept
included).

Following a backward approach (but in lab sessions both backward and forward
approaches will be considered ) we want to test if, for example, the last βk is
equal to 0.

�
H0 : βk = 0

H1 : βk �= 0
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Variable Selection and Hypothesis Test

The following quantity

ΔDev(β, y) = 2(�(β0,β1, . . . ,βk ; y)− �(β0,β1, . . . ,βk−1,βk = 0; y))

Is the difference between the log-likelihood between 2 nested models (the first
model is the “full” model; the second model is the model with βk = 0) multiplied
by 2.

This difference is the quote of the deviance explained by βk . Under the null
hypothesis, this difference is approximately distributed following a chi-squared
random variable with 1 degree of freedom

ΔDev(β, y)|H0
∼a χ2

1

This part provides us with the inferential part for the hypothesis test.
The degree of freedom derived from the number of coefficients tested to be 0
(in this case the degree of freedom is equal to 1).
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Variable Selection and Hypothesis Test

We have in this case two nested models
�
M0 : η̂0 = β̂0,1 + β̂0,1X1 + . . .+ β̂0,k−1Xk−1 + β̂0,kXk

M1 : η̂1 = β̂1,1 + β̂1,1X1 + . . .+ β̂1,k−1Xk−1 + 0 Xk

Given the two models estimates, the value of the observed statistic test is

Toss = ΔDev(β̂0, β̂1, y) = 2(�M0(β̂0)− �M1(β̂1))
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If the observed values of the statistic test are greater than the quantile 1− α of
a χ2

1 (3.84) we will reject the null hypothesis.
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Variable Selection and Hypothesis Test
An example

During the Challenger disaster (example of the previous chapter), the engineering
tested if also other factors influenced the probability of o-rings damage. Another
investigated factor was the pressure used to check the presence of leaks.

temp pres fail
4/12/81 66 50 0
11/12/81 70 50 1
3/22/82 69 50 0
11/11/82 68 50 0
4/4/83 67 50 0
6/18/83 72 50 0
8/30/83 73 50 0
11/28/83 70 100 0
2/3/84 57 100 1
4/6/84 63 200 1
8/30/84 70 200 1
10/5/84 78 200 0

temp pres fail
11/8/84 67 200 0
1/24/85 53 200 2
4/12/85 67 200 0
4/29/85 75 200 0
6/17/85 70 200 0
7/29/85 81 200 0
8/27/85 76 200 0
10/3/85 79 200 0
10/30/85 75 200 2
11/26/85 76 200 0
1/12/86 58 200 1

The increasing pressure during the tests may have generated additional damage
to the o-rings.
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Variable Selection and Hypothesis Test
An example

The linear logistic model becomes the following:

logit(Pr(Yi = 1)) = logit(πi ) = ηi = β0 + β1X1i + β2X2i

where X1. is the temperature and X2. is the pressure.

Question. Had the pressure also influenced the probability to fail?

We can have a response with this Hypothesis Test:
�
H0 : β2 = 0

H1 : β2 �= 0
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Variable Selection and Hypothesis Test
An example

We have estimated two nested models. A Full model (1, M0) and the model
with β2 setted to 0 (2, M1).

Table: Estimated logistic models

Dependent variable:

I(fail >0)

(1) (2)

temp −0.242∗∗ −0.232∗∗
(0.110) (0.108)

pres 0.010
(0.009)

Constant 14.360∗ 15.043∗∗
(7.443) (7.379)

Observations 23 23
Log Likelihood −9.486 −10.158
Akaike Inf. Crit. 24.972 24.315

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The Wald test indicated the coefficient for the pressure is not statistically signif-
icant (p-value >0.05) and it can be removed.
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Variable Selection and Hypothesis Test
An example

But in case of dummy variables (a dymmy variable has more than two coeffi-
cients) the use of a single case p-value is not a praticable solution.
Using a Deviance testing approach, the 2 times the difference between the two
log-likelihoods is equal to

2(�M1 − �M0) = 2(−9.486− (−10.158)) = 1.34

The 0.95 quantile of a χ2
1 (with 1 degree of freedom) at level 0.057 is 3.84.

Pr(χ2
1 < 3.84) = 0.95

Since 1.34<3.84, we accept the null Hypothesis. The pressure did not influence
the probability of fail8.
Other potential variable selection can follow computational indices (Akaike In-
formation Criterion (AIC), Bayesian Information Criterion (BIC), . . .).

7α is set to 0.05, that is a commonly choice, and 1-α=0.95
8For a complete statistical analysis of the Challenger disaster see this manuscript.

(https://www.jstor.org/stable/2290069).

Paolo Girardi University of Padova

PSQ1096299 - Second Part Variable selection and Diagnostic 93/108

Diagnostics for GLMs
Source: 15.4 (Faraway, 2014)

Most of the diagnostics for linear models can be extended relatively straightfor-
wardly to GLMs. Several types of residuals can then be defined. We considered:

Raw or response residuals: it is simply the difference between the
observed values and the estimated ones Yi − µ̂i =Yi − g(η̂i )

−1.

Pearson residuals: they are the equivalent of the standardized residuals.
They can obtained by:

Yi − µ̂i�
V̂ar(Yi |ηi )

where V̂ar(Yi |ηi ) is the expected conditional variance.

Standardized Pearson residuals:

Rpi
Yi − µ̂i�

V̂ar(Yi |ηi )(1− hi )

where hi is the i-th value of the diagonal of the hat matrix H.
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Diagnostics for GLMs
Source: 15.4 (Faraway, 2014)

Deviance residuals: Gi , are the square roots of the casewise components
of the residual deviance attaching the sign of the corresponding response
residual.

Gi = sgn(yi − µ̂i )

�
2(

yi (g(yi )− g(µ̂i ))− b(g(yi )− g(µ̂i ))

ai
)
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Diagnostics for GLMs
Source: 15.4 (Faraway, 2014)

Standardized Deviance residuals are

Rpi
Gi√
1− hi

The analysis of residuals consists in contrasting the residuals of the
fitted model with that expected by their theoretical model.

Among the others, the deviance residuals are often used since they
approximately follow a normal distribution (better than Pearson
deviance residuals).
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Diagnostics for GLMs

Outliers or Influential points
Outliers can be observed by the quantile-quantile diagram. Residuals very far
from the remaining points imply potential outliers.
As in LMs, Influential points can be obtained by this approximation of the Cook
distance

di =
R2
Pi

k + 1

hi
1− hi

where k is the number of parameters, and hi is the diagonal value of the Hat
matrix H. Values higher than 1 can be pointed as an outlier or influential
observation.
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Diagnostics for GLMs

The Diagnostics for GLMs is similar to the diagnostic for LMs:

Approximate Normality distribution of the Deviance residuals (i.e. qqplot
or Shapiro-Wilk test):

Presence of eteroschedasticiy or overdispersion;

Cheking the structural part of the model (i.e. relationship of residuals
with regressiors);

Looking for unusual observations or Influential points;

Collinearity Diagnostics.
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Diagnostics for GLMs

QQ-plot: we assess the presence of a normal distribution for deviance residuals.
Before we analysed the trend of the first 25 days of the epidemic in Italy with a
Poisson regression model. Here is the Quantile-quantile diagram of the Deviance
residuals.
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The normality of the deviance residuals is not so far.
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Diagnostics for GLMs

Raw Residuals vs Predicted value: the presence of a flat trend is good.
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The parabolic trend can be meant that a quadratic term can be added (+x2) in
the model.
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Diagnostics for GLMs

Scale-location: the presence of a flat trend is good.
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Diagnostics for GLMs

Cook distance: values higher than 4/(N-k-1) indicate outliers/influential points
(N is the number of observation and k is the number of predictors)
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All the observations, the Cook
distance is higher than
1/(25-2-1)=0.0455. This may
suggest the presence of
overdispersion. The same plot with
an over dispersion parameter
estimated is reported below:
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Collinearity Diagnostics for GLMs

For detecting collinearity several methods can be employed. We focus our at-
tention to the Generalized Variance Inflation Factor (GVIF) index. Starting with
a simple model

η = α+ β1X1 + β2X2

The VIF (Variance Inflation Factor) is defined as:

VIF =
1

1− R2

where R2 is quote of variance explained by X1 to X2 (or viceversa).
Higher values of VIF indicate the presence of collinearity.
An example:
If I have a R2 equal to 0.8 in a linear regression between X1 and X2, the two
variables should be highly (linearly) correlated. The resulting VIF is below

VIF =
1

1− R2
=

1

1− 0.8
=

1

0.2
= 5
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Collinearity Diagnostics for GLMs

In a more complex settings formed by

η = α+ βX + βZ

where X is a matrix (p1 x n) matrix and Z is a (p2 x n) matrix, the GVIF can be
obtained by

GVIF =
detR1 detR2

detR

there R1, R2 and R are the correlation matrix of X, Z and (X,Z) togheter.
To make generalized variance-inflation factors comparable across dimensions, Fox
and Monette suggest reporting GVIF

p
2 .

The threshold is equal to 10
p
2 to assess collinearity. In presence of only a regressor

with a dimension equal to 1, the threshold is equal to 3.16.
Larger values indicate the presence of collinearity.
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Collinearity Diagnostics for GLMs

We consider the IRIS dataset. We want to assess, in a full model settings, the
presence of collinearity
The model is the following:

E [Yi ] = πi = g(η)−1 = exp(β0 + β1X1i + β2X2i + β3X3i + β4X4i )

where

Y = 1 if the specie is versicolor (0 otherwise)

X1i is the Sepal Length

X2i is the Sepal Width

X3i is the Petal Length

X4i is the Petal Width
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Collinearity Diagnostics for GLMs

Estimate Std. Error Z value Pr(>�z� )
(Intercept) 7.378 2.499 2.952 0.003
Sepal.Length -0.245 0.650 -0.378 0.706
Sepal.Width -2.797 0.784 -3.569 0.000
Petal.Length 1.314 0.684 1.921 0.055
Petal.Width -2.778 1.173 -2.368 0.018

Petal and sepal width are statistically significant (p<0.05). We can for example
drop the first variable Sepal Length that is not influent.
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Collinearity Diagnostics for GLMs

However the GVIF calculated for each regressor is the following

Variable GVIF
Sepal.Length 6.86

Sepal.Width 1.51

Petal.Length 27.93

Petal.Width 14.80

Three variables report a large GVIF value. After removing Sepal length (non
significant) we obtain

Variables GVIF
Sepal.Width 1.09

Petal.Length 12.76

Petal.Width 12.60

Petal Length and Petal Width are collinear (cor=0.963). We can drop from the
model one of them.
In the end, the final model will contain only Sepal Width.
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To be continued...

Frequent idioms on statistics:

If you torture the numbers long enough, they will confess
everything.

A single death is a tragedy, a million deaths are a statistic.

If you eat two chickens and I don’t, statistically it turns out
that we ate one each.

If you want to inspire confidence, provide a lot of statistics.

Thanks for your attention.
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