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1.1
The UOI inventory is a test developed to measure students’ success in speaking skills and is
composed by twelve items on a 21-point rating scale. In a recent research, it has been admin-
istered to a sample of n = 125 high-school students along with a demographic sheet collecting
information about gender, age, and gross annual income in Euro, which has been codified using
three categories (i.e., a. [0 − 15000]; b. ]15000 − 30000]; c. ]30000 − higher]). The goal is to
study whether the UOI total score - which has been computed as average of the twelve items -
can be modeled as a function of the demographic variables.

1. Identify the number of statistical units, the number of variables for the analysis by distin-
guishing between the outcome variable (Y) and the predictors (X1, . . . , XJ).

2. Identify the support of the outcome variable Y .

3. Write the linear function connecting Y to X1, . . . , XJ and define the corresponding most
appropriate statistal model (e.g., see slides B:17-18).

solution

1. The number of statistical units is n = 125, the number of variables available is J + 1 = 4,
with UOI total score being the outcome Y . The remaining variables gender (X1), age
(X2), and income (X3) will be used as predictors.

2. The outcome variable is computed by applying the mean function over twelve variables
(items) bounded in the interval {1, . . . , 21}. Then, the support is sup(Y ) = [1, 21], which
is a bounded subset of real numbers.

3. The linear function is

UOI = β0 + genderβ1 + ageβ2 + incomeβ3 + ε

In this case, the Normal linear model can be considered as a good candidate to this purpose:

yi ∼ N (y;µi, σ
2) i = 1, . . . , 125

µi = β0 + xiβ

where xi is a 1 × J vector of predictors for the i-th observation, whereas β is a vector
of appropriate order. However, since we are dealing with bounded outcome variables, the
adequacy of this model should carefully be checked once the parameters will have been
estimated.

1.2
Consider an experiment to study memory in a clinical sample of n = 78 pre-school children where
the following variables have been collected: (i) number of fails in recognizing the stimulus, (ii)
age in months, (iii) neurological impairment as measured by standardized values via the RYY
test, (iv) number of weeks from the latest neurological episode. The goal is to study whether
experiment failures can be predicted by the other variables.

1. Identify the number of statistical units, the outcome variable Y , and the predictorsX1, . . . , XJ .

2. Identify the support of the outcome variable and the most appropriate statistical (linear)
model for the current analysis.

1



3. Identify the number of parameters the model takes along with the parameter space.

solution

1. The number of statistical units is n = 78, the outcome is the number of errors (Y ) in
the recognition task, the predictors are represented by age (X1), neurological impairment
(X2), and number of weeks from the latest episode (X3).

2. The outcome variable consists of counts, therefore sup(Y ) = N0. The Poisson linear model
can be considered an adequate model to analyse these data:

yi ∼ Poi(y;λi) i = 1, . . . , 78

λi = exp(β0 + ageβ1 + neuroβ2 + weeksβ3)

However, as the mean E [Yi] and the variance Var [Yi] are the same in this model, attention
should be paid to excess of zeros or overdispersion in the data (the Poisson model could
not lack in flexibility).

3. The array of parameter is θ = {β0, β1, β2, β3} ∈ R4, with length p = 4 (i.e., number of
parameters).

1.3
In a context-recall task, n = 78 participants have been equally assigned to a control group and an
experimental group. During the experiment, reaction times (in logarithmic scale) and accuracies
have been measured. The researcher wants to assess whether reaction times vary as a function
of the manipulation task.

1. Identify the number of statistical units, the outcome variable Y , and the predictorsX1, . . . , XJ .

2. Identify the support of the outcome variable and the most appropriate statistical (linear)
model for the current analysis.

3. Identify the number of parameters the model takes along with the parameter space.

4. Provide an interpretation for the model parameters.

solution

1. The number of statistical units is n = 78, the outcome is the reaction time in log scale (Y ),
the predictor is the experimental manipulation codified as group assignment (X ∈ {1, 2}).

2. The outcome variable consists of log-times, therefore sup(Y ) = R. The Normal linear
model can be considered to analyse these data:

yi ∼ N (y;µi, σ
2) i = 1, . . . , 78

µi = β0 + groupiβ1

3. The parameters are θ = {β0, β1, σ2} ∈ R× R× R+. The number of parameters is p = 3.

4. As the predictor is categorical with two levels, the parameters {β0, β1} codify the means
for both groups as follows:

β0 : mean of group = 1

β1 : increment of the mean for group = 2 (group = 1 is the baseline)
β0 + β1 : mean of group = 2
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1.4
Consider the dataset teengamb from the R library faraway. The dataset concerns a study of
teenage gambling in Britain. First, transform the variable gamble as follows: log.gamble =
log(gamble+1). Second, make a numerical and graphical summary of the data in order to eval-
uate how log.gamble varies as a function of the other ones. Third, define and fit a Normal
linear model to evaluate whether log.gamble is predicted by sex. The fit can be implemented
by using either the ML solutions (see slides B:13,25,26) or the lm() function. Finally, provide
comments for the estimated parameters and the overall fit of the model. Optionally: Plot the fit-
ted model. For further information about the data, type ?faraway::teengamb on the R console.

solution

## Load the data and check the data structure
datax = faraway::teengamb
str(datax)
datax$sex = as.factor(datax$sex) #sex should be transformed as a categorical variable
datax$log.gamble = log(datax$gamble + 1) #variable transformation as required

## Descriptive analyses on the data
psych::describe(x = datax[, -5]) #the original variable should be removed from the analysis
psych::describeBy(x = datax$log.gamble, group = datax$sex)
psych::pairs.panels(x = datax[, c(2:4, 6)]) #it works for numeric variables only
boxplot(datax$log.gamble[datax$sex == 0], datax$log.gamble[datax$sex == 1], frame = FALSE,

names = c("0", "1"))

The Normal linear model is defined as follows:

log.gamblei ∼ N (y;µi, σ
2) i = 1, . . . , 47

µi = β0 + sexiβ1

whereas parameter estimation and fit evaluation can be performed using R.

## Fit using the ML solutions directly
X = model.matrix(~datax$sex) #it creates the X matrix of predictors
y = datax$log.gamble #outcome
n = NROW(datax) #number of observations
J = 1 #number of predictor
b_est = solve(t(X) %*% X) %*% t(X) %*% y #beta
sigma_est = 1/n * t(y - X %*% b_est) %*% (y - X %*% b_est) * (n/(n - J - 1)) #sigma^2
se_b_est = sqrt(diag(solve(t(X) %*% X)) * sigma_est)
y_hat = X %*% b_est
one = matrix(data = 1, nrow = n, ncol = 1)
r_squared = 1 - ((t(y - y_hat) %*% (y - y_hat))/(t(y - one * mean(y)) %*% (y - one *

mean(y)))) #unadjusted index

print(b_est)
print(sigma_est)
print(se_b_est)
print(r_squared)

## Fit using the lm() function
lm_def = as.formula(log.gamble ~ sex) #model definition
lm_fit = lm(formula = lm_def, data = datax) #model fit
out = summary(lm_fit)
print(out)

# extract the estimated quantities
b_est = out$coefficients[, 1]
se_b_est = out$coefficients[, 2]
sigma_est = out$sigma^2
r_squared = out$r.squared
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print(b_est)
print(sigma_est)
print(se_b_est)
print(r_squared)

The results suggest that log.gamble decreased as a function of sex: In particular participants
in the group sex=0 showed a higher log.scale as opposed to participants in the group sex=1.
The estimated mean of the group sex=0 is equal to β0 = 2.555 whereas the estimated mean of
the remaining group is β0 + β1 = 2.555− 1.444 = 1.111.

Finally, the optional plot can be get using the following R commands:

## Fit the model
lm_def = as.formula(log.gamble ~ sex) #model definition
lm_fit = lm(formula = lm_def, data = datax) #model fit
out = summary(lm_fit)
b_est = out$coefficients[, 1]

## Plot the observed points
plot(x = rep(1, length(datax$log.gamble[datax$sex == 0])), datax$log.gamble[datax$sex ==

0], xlim = c(0.5, 2), bty = "n", xlab = "sex", ylab = "log.gamble", pch = 20)
points(x = rep(1.5, length(datax$log.gamble[datax$sex == 1])), datax$log.gamble[datax$sex ==

1], bty = "n", pch = 20)

## Plot the estimated means
points(x = 1, y = b_est[1], pch = 17, col = 2, cex = 2) #sex=0
points(x = 1.5, y = b_est[1] + b_est[2], pch = 17, col = 2, cex = 2) #sex=1
abline(a = b_est[1], b = b_est[2], col = "darkgray", lty = 2, lwd = 2)

1.5
The dataset uswages from the library faraway contains data about weekly wages for US male
workers from the Current Population Survey (cohort year: 1988). The goal is to define and fit
a linear model to predict weekly wages (in log scale) as a function of years of education and
years of experience. For further information about the data, type ?faraway::uswages on the R
console.

1. Identify the number of statistical units, the outcome variable Y , and the predictorsX1, . . . , XJ .
The number of statistical units is n = 2000, the outcome is the weekly wage (Y ), the
predictors are the years of education and the year of work experience (note that the dataset
contains other variables that might be used as further predictors).

2. Identify the support of the outcome variable and the most appropriate statistical linear
model for the current analysis.
The outcome variable consists of weekly wages in log scale, therefore sup(Y ) = R. The
Normal linear model can be considered to analyse these data:

yi ∼ N (y;µi, σ
2) i = 1, . . . , 78

µi = β0 + educiβ1 + experiβ2

3. Identify the number of parameters the model takes along with the parameter space.
The parameters are θ = {β0, β1, β2, σ2} ∈ R× R× R× R+. The number of parameters is
p = 4.

4. Draw a random sample of n = 120 from the dataset uswages. To do so, use the function
random_subsample(X,n = 120,seedx = 122) with X being the current dataset. Note that
the function can be loaded by typing source("utilities.R"). The file utilities.R is
available on the folder “Datasets & Utilities”. From now on, use the subset of data for the
further analyses.

4



datax = faraway::uswages
source("../labs/utilities.R") #use your own directory and path
datax = random_subsample(X = datax, n = 120, seedx = 122)

5. Define a new variable as follows: logwage = log(wage).

datax$logwage = log(datax$wage)

6. Make a graphical summary of the relationships among logwage, edu, and exper.

par(mfrow = c(1, 2))
plot(datax$educ, datax$logwage, bty = "n", xlab = "educ", ylab = "log(wage)", pch = 20)
plot(datax$exper, datax$logwage, bty = "n", xlab = "exper", ylab = "log(wage)", pch = 20)

7. Define and fit an appropriate linear model in order to predict logwage as a function of edu
and exper.

out = lm(formula = logwage ~ educ + exper, data = datax)

8. Evaluate the overall fit of the model and give an interpretation to the regression coefficients.
Plot the estimated model.

summary(out)
plot(effects::allEffects(out))

The fit of the current model is not satisfactory at all. Overall, it explains about the 20%
of the observed variability of Y . The remaining amount of variability is not currently
explained by the predictors. This suggests that further variables might be added to the
model in order to explain the variability of weekly wages.
With regards to the current regression coefficients we can state as follows: A unit variation
of educ increases logwage by 0.119 whereas a unit variation of exper increases logwage by
0.021. However, as the outcome variable has been log transformed, it is natural to interpret
the exponentiated regression coefficients. These values correspond to changes in the ratio of
the expected geometric means of the original outcome variable (e.g., wage). In particular,
each unit of educ increases the untransformed wage by exp(β1 = 0.1196) = 1.127 or we
expect to see a (exp(0.1196)−1)100) = 12.7% of variation in weekly wages. Similarly, each
unit increase of exper increases the untransformed wage by exp(β2 = 0.021) = 1.021 or
we expect to see a (exp(0.021)− 1)100) = 2.17% of variation in weekly wages.

9. Compute the 90% confidence interval associated with the predictors. Using just these
intervals, what can we conclude about the coefficients at the population level?

confint(out, level = 0.9)

The CIs for the regression parameters do not contain the null value zero. We can conclude
that both coefficients significantly differ by zero (α = 0.10). We also notice that CI(educ)
is slightly larger than CI(exper).

10. Consider the estimated coefficients. In order to get a higher weekly wage, would you
suggest to your children to get a higher education level or, by contrast, to get more work
experience? Please, justify why. We will suggest to get a higher education level. This is
due to the fact that, based on the sample data being analysed, the variable educ produces
a larger increase of the outcome (about 12% per unit).

11. Use the incremental-F test procedure in order to check whether the current model with
two predictors is really the best model given the available data (see lab2.R, section A.4).
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# Note: The variable with higher F-value has to be included.
mod0 = lm(formula = logwage ~ 1, data = datax)
add1(mod0, scope = out, test = "F")

mod0 = lm(formula = logwage ~ educ, data = datax)
add1(mod0, scope = out, test = "F")

1.6
Consider the dataset dataex1.csv on the folder “Datasets & Utilities”. It contains five contin-
uous variables X1,..,X5 as well as a continuous response variable y. The goal is to define and
fit a Normal linear model by selecting the best subset of predictors explaining the outcome.
Note: files with extension .csv can be loaded into R by using the function read.csv(file =
"namepath/dataex1.csv",header = TRUE) with namepath being the current path locating the
file dataex1.csv on your local machine.

1. Load the data.

datax = read.csv(file = "dataex1.csv", header = TRUE)

2. Make a numerical and graphical summary of the relationships among y and the predictors.

psych::describe(x = datax)
psych::pairs.panels(datax)

3. Use a statistical procedure to select the best subset of predictors for the outcome y.

mod_full = lm(formula = y ~ ., data = datax) #complete model
mod0 = lm(formula = y ~ 1, data = datax) #null model

add1(mod0, scope = mod_full, test = "F")
# X4 has to be retained for the next analysis

mod0 = lm(formula = y ~ X4, data = datax)
add1(mod0, scope = mod_full, test = "F")
# X2 has to be retained for the next analysis

mod0 = lm(formula = y ~ X4 + X2, data = datax)
add1(mod0, scope = mod_full, test = "F")
# X3 has to be retained for the next analysis

mod0 = lm(formula = y ~ X4 + X2 + X3, data = datax)
add1(mod0, scope = mod_full, test = "F")
# The remaining variables do not contribute to significantly change the fit of
# the model. The procedure stops here.

mod_final = lm(formula = y ~ X4 + X2 + X3, data = datax)

The F-test based procedure has selected three variables X2, X3, X4 out of five potential
predictors.

4. Describe the results of the final model. Use the partial regression plots to simplify the
interpretation of the parameters.

summary(mod_final)
car::avPlots(mod_final, id = FALSE)
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The final model explains about 0.90% of the variance of y. Two of the current predictors
are positively related, namely X2 (βX2 = 2.624, σβX2 = 0.1518) and X3 (βX3 = 0.6586, σβX3 =
0.1616), whereas one of them is negatively related to the outcome, i.e. X4 (βX4 = −3.864,
σβX4 = 1515). The t-statistics associated to the regression coefficients are significant (α =
0.05), with tβX4 showing the largest value.

5. Consider the F statistic of the omnibus test. Plot the probability distribution of the
statistic test F with degrees of freedom equal to those reported in the summary of the
fitted model. Where is the observed F-statistic (i.e., W = 289.10) located in this plot?

curve(expr = df(x, df1 = 3, df2 = 100 - 5 - 1), 0, 10, bty = "n")

Considering the plot of the F-distribution, the observed statistic is located on the tail of
the distribution. Its observed value is extreme if compared to a F-distribution with these
degree of freedom. This is why the probability associated to the statistic is closed to zero.

6. Consider the parameter βX2. Test the hypothesis that H0 : βX2 = 2.30 against H0 : βX2 6=
2.30 (use α = 0.01).

n = NROW(datax)
beta_est = summary(mod_final)$coefficients[3, 1]
sd_beta = summary(mod_final)$coefficients[3, 2]
tb = (beta_est - 2.3)/sd_beta
p_tb = 2 * min(pt(q = -tb, df = n - 3 - 1), pt(q = tb, df = n - 3 - 1)) #p-value
print(p_tb)

The probability P(T ≥ tb) = 0.0349 (p-value) is higher then the fixed level α. Then, there
is no evidence against H0: The estimated βX2 does not significantly differ from β0 = 2.30
at the population level.

1.7
Consider the dataset dataex2.csv on the folder “Datasets & Utilities”. It contains four contin-
uous variables X1,..,X4 as well as a continuous response variable y. The goal is to define and fit
a Normal linear model by selecting the best subset of predictors explaining the outcome. Note:
The file can be loaded using the function read.csv(file = "namepath/dataex2.csv",header
= TRUE) with namepath being the current path locating the file dataex2.csv on your local
machine.

1. Load the data.

datax = read.csv(file = "dataex2.csv", header = TRUE)
source("../labs/utilities.R")

2. Make a numerical and graphical summary of the relationships among y and the predictors.
Indicate the support of the outcome variable y and provide comments about the graphical
results.

psych::describe(x = datax)
exploratory_plots(y = datax[, 1], X = datax[, 2:5], plot_type = "loess")

The support of the outcome variable is the continuous interval [−14.87, 22.64]. The out-
come seems to be positively related to X1 and negatively associated with X2. No linear
relationships between the outcome and the remaining predictors X2 and X4 can be visually
detected.

3. Select the best subset of predictors for the outcome variable by means of an appropriate
procedure.
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leaps_r2(y = datax[, 1], X = datax[, 2:5])

All the available predictors are continuous so that the function leaps_r2() can be used.
It implements a procedure based on the maximization of the adjusted R2 index. The
final model is that one, considering a set of potential models, maximizing the adjusted R2
index. Another possibility would be to use the incremental F-test by means of the function
add1(), as follows. Note that, in this case, the results might be different.

full_model = lm(formula = y ~ ., data = datax)

current_model = lm(formula = y ~ 1, data = datax)
add1(scope = full_model, object = current_model, test = "F")

current_model = lm(formula = y ~ X1, data = datax)
add1(scope = full_model, object = current_model, test = "F")

current_model = lm(formula = y ~ X1 + X3, data = datax)
add1(scope = full_model, object = current_model, test = "F")

current_model = lm(formula = y ~ X1 + X3 + X4, data = datax)
add1(scope = full_model, object = current_model, test = "F")

4. Define and fit a Normal linear model considering the best subset of predictors.
The Normal linear model is as follows:

yi ∼ N (y;µi, σ
2) i = 1, . . . , 80

µi = β0 + X1iβ1 + X3iβ2 + X4iβ3

The model can be fit using the lm() function.

out = lm(formula = y ~ X1 + X3 + X4, data = datax)

5. Describe the results of the final model. Use the partial regression plots to simplify the
interpretation of the parameters.

summary(out)
plot(effects::allEffects(out))
# or, alternatively, car::avPlots(out)

The final model explains about 0.91% of the variance of y. Two of the current predictors
are positively related, namely X3 (βX3 = 1.438 and σβX3 = 0.039) and X3 (βX4 = 0.701
and σβX4 = 0.038), whereas one of them is negatively related to the outcome, i.e. X1
(βX1 = −2.913, σβX1 = 0.040). The t-statistics associated to the regression coefficients are
significant (α = 0.05), with tβX1 showing the largest value.

6. Compute the 98% confidence intervals for the regression coefficients.

confint(object = out, level = 0.98)

7. Test the hypothesis H0 : β1 = −2.50 against H1 : β1 < 2.50 with α = 0.085.

refValue = -2.5
beta1_est = -2.9137
beta1_sd = 0.04013
t_beta1 = (beta1_est - refValue)/beta1_sd
p_tb = pt(q = t_beta1, df = 80 - 3 - 1)
print(p_tb)

The probability P(T ≥ t_beta1) = 2.165e−16 (p-value) is lower then the fixed level α.
Then, there is evidence against H0: The estimated β1 significantly differ from the reference
value.
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8. Use the fitted model to predict the outcome variable y when X1 = 15.2, X3 = 10.9, and
X4 = −1.2 (for further details, see lab2.R section A.6).

newdata = data.frame(X1 = 15.2, X3 = 10.9, X4 = -1.2)
out_pred = predict(object = out, newdata = newdata, se.fit = TRUE, level = 0.95,

interval = "prediction")
print(out_pred)

The prediction for the outcome is equal to ŷ = 15.2β̂1 + 10.9β̂2 − 1.2β̂3 = −20.369 with a
95% CI of [−22.517,−18.221].

1.8
The insurance company LifeIsLife provides life and health insurances in higher risks situations.
In order to establish how much a customer should pay to get an insurance-based service (i.e.,
insurance premium), the company would like to use a statistical model that predicts how much
a new customer would pay if he or she asked for a life insurance (insurance_score). The
company interprets this variables in the following way: the higher the score, the higher the
insurance premium that should be payed by the customer. From past research, the company
knows that the following variables might be considered as predictor of the insurance premium:

• risk_death: score of the risk to death accidentally (the higher the score, the higher the
risk)

• risk_layoff: score of the risk to lose the current job (the higher the score, the higher the
risk)

• risk_sick: score of the risk to get sick permanently (the higher the score, the higher the
risk)

• purch_power: score of the capability to buy goods and service (the higher the score, the
higher the propensity)

• savings: score of the ability to save money during the life (the higher the score, the higher
the propensity)

• age: age in years

The company has collected a large amount of data over n = 5000 customers (see dataex3_a.csv).
The goal is to select the best predictors of insurance_score by means of a Normal linear model.
The built model should be then used to predict the insurance premium for new customers.

1. Load the data.

datax = read.csv(file = "dataex3_a.csv", header = TRUE)
source("../labs/utilities.R")

2. Make a numerical and graphical summary of the relationships among y and the predictors.
Indicate the support of the outcome variable y and the range for the variable age. Finally,
provide comments about the graphical results.
Note: In order to create the graphical summary, randomly select a subsample of length
n = 500 from the original dataset by means of the function random_subsample().

psych::describe(x = datax)
subdata = random_subsample(X = datax, n = 500)
exploratory_plots(y = subdata[, 1], X = subdata[, 2:7], plot_type = "loess")

The support of the outcome variable is the continuous interval [−68.30,−14.15]. The
variable age is between 18 and 36 years old. By visually inspecting the data, a clear
negative relationship between insurance_score and age can be detected. There is also a
mild negative relationship between the outcome and risk_sick while there are no clear
linear pattern between insurance_score and the other predictors.
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3. Select the best subset of variables which predicts insurance_score.

leaps_r2(y = datax[, 1], X = datax[, -1])

All the variables included in the dataset can be considered as predictors of insurance_score.

4. Define and fit a Normal linear model considering the best subset of predictors.

The Normal linear model is as follows:

insurance_scorei ∼ N (y;µi, σ
2) i = 1, . . . , 5000

µi = β0 + risk_deathiβ1 + risk_sickiβ2 + purch_poweriβ3 + savingsβ4 + ageβ5

The model can be fit using the lm() function.

out = lm(formula = insurance_score ~ ., data = datax)

5. Check the Normality of residuals and homoscedasticity for the fitted model. Evaluate
eventual non linearities using partial regression plots.

plot(performance::check_normality(out))
plot(performance::check_heteroscedasticity(out))
car::avPlots(out)

The assumptions of Normality of residuals and homoscedasticity hold for the fitted model.
By visually inspecting the partial regression plots, nonlinear patterns do not emerge. How-
ever, the plots indicate the presence of potential unusual observations for the five predictors
being considered.

6. Run diagnostics to evaluate the presence of unusual observations. Note that for large
sample sizes (in this case n = 5000), the diagnostics might be too sensitive in discovering
unusual observations; in this case, looking for observations showing highest studentized
residuals would be the preferred option. Note that, in case of unusual observations, the
model should be fit again after having removed the unusual points.

check_unusual_observations(fitted_model = out, m = 10)
car::influencePlot(out, bty = "n")
car::leveragePlots(out)
diffbeta_plot(fitted_model = out)

The h-values show no clear leverage points for the fitted model. There are no observations
clearly classified as outliers (as indicated by the α-values, which are currently higher then
the threshold α0 = 0.05). By contrast, there are few observations (i.e., i = 386, i = 4102)
which could potentially be classified as influential observations. This is also suggested by
the visual inspection of the influential plot (see function car::influencePlot()). The
results of the function diffbeta_plot() are not definitive with the current value of the
reference quantile (the parameter qs=0.98 in the function) and a higher value should be
considered for this parameter (e.g., qs=0.99998). However, by crossing the results provided
by check_unusual_observations(), influencePlot(), and car::leveragePlots() we
might consider to evaluate how large the suggested observations (i.e., i = 386, i = 4102,
i = 4250) affect the estimated β’s, as follows:

X = dfbetas(model = out)
print(X[c(386, 4102, 4250), ])

Overall, the suspected observations do not strongly affect the estimated regression coeffi-
cients. The single exception is i = 386 for the predictor risk_sick where the difference
is δβ2 = −0.104. We decide to remove the point i = 396 and to run again the analyses
performed so far.
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datax = datax[-386, ]
out = lm(formula = insurance_score ~ risk_death + risk_sick + purch_power + savings +

age, data = datax)

7. Describe the results of the final model. Use the partial regression plots to simplify the
interpretation of the parameters.

summary(out)
plot(effects::allEffects(out))

The final model explains about 0.75% of the variance of insurance_score. As the sample
size n is too large, significance tests are no longer of practical utility. The results suggest
the existence of a linear relationship between risk_death and score_insurance (β̂1 =
0.723, σβ1 = 0.049), which indicates that the higher the risk of accidental death, the
higher the insurance premium. On the contrary, the other predictors negatively affect
the outcome variable. In particular, the risk of being sick is negatively associated to
insurance_score (β̂2 = −1.418, σβ2

= 0.049), the purchasing power is negatively related
to insurance_score (β̂3 = −0.532, σβ3 = 0.049), savings negatively affects the outcome
variable (β̂4 = −0.715, σβ4 = 0.049). Similarly, insurance_score decreases as a function
of age insurance_score (β̂5 = −1.278, σβ5

= 0.049).

8. Load the dataset dataex3_b.csv (it contains data of n = 10 new customers). Use the fitted
model to predict the insurance premium for the new observations and indicate whether
the new customers should pay a higher or lower insurance premium (for further details,
see lab2.R section A.6).

datay = read.csv(file = "dataex3_a.csv", header = TRUE)
out_pred = predict(out, newdata = datay, se.fit = TRUE, level = 0.95, interval = "prediction")
print(out_pred)

Based on the trained model, we predict that a lower insurance premium should be provided
by the new customers.

1.9
The dataset happy from the library faraway contains data collected from thirty nine students
in the MBA class of the University of Chicago. The dataset includes the following variables:

• happy: Happiness on a 10 point scale where 10 is most happy

• money: Family income in thousands of dollars

• sex: 1 = satisfactory sexual activity, 0 = not

• love: 1 = lonely, 2 = secure relationships, 3 = deep feeling of belonging and caring

• work: 5 point scale where 1 = no job, 3 = ok job, 5 = great job

The variable happy is the outcome to be predicted.

1. Load the data. The love predictor takes three possible values but mostly takes the value
2 or 3. Create a new predictor called clove which takes the value zero if love is 2 or less
and 1 otherwise. Use clove instead of love in the subsequent analyses. Finally, check
whether all the categorical variables are correctly codified as factor otherwise transform
them (use the factor() R function).
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source("../labs/utilities.R")

datax = faraway::happy
str(datax)

datax$clove = rep(1, NROW(datax))
datax$clove[datax$love <= 2] = 0

datax$sex = factor(x = datax$sex, levels = c(0, 1), labels = c("satisf", "notSatisf"))
datax$clove = as.factor(x = datax$clove)

2. Make a numerical and graphical summary of the relationships between the outcome and
the predictors. Provide comments about the graphical results.

exploratory_plots(y = datax$happy, X = datax[, -c(1, 4)])

By visually inspecting the data, the variable happy is positively associated with money
(although the positive trend might be caused by influential or leverage points) as well as
with work. Both the subgroups created by the variable sex show the same scores of happy.
With regards to clove, participants in the group clove=1 show a higher level of happy
then participants in the complemetary group. However, the latter show higher level of
heterogeneity of happy scores.

3. Fit a Normal linear model with happy as the response and the other four variables as
predictors (additive model). Give an interpretation for the meaning of the clove coefficient.

mod1 = lm(formula = happy ~ ., data = datax[, -4])
summary(mod1)

The predictor clove is categorical with two levels and the interpretation of the estimated
coefficient β̂clove = 2.296 (σ̂βclove = 0.411) has to be done by considering the reference level
β̂0 (the intercept term). In this case, as the model includes more then a single categorical
predictor (the variable sex is categorical), the intercept includes both the levels sex:satisf
and clove:0. Consequently, β̂clove codifies the increment of happy from clove:0 to clove:1
when sex:satisf. Moreover, given the t-statistic at α = 0.001 (tβclove = 5.578), the
increment is statistically significant. To see this, write down the mean of the model:

µi = β0 + moneyiβmoney + z
(1)
i sexiβsex + workiβwork + z

(2)
i cloveiβclove

with z(1) ∈ {0, 1}n and z(2) ∈ {0, 1}n being dummy vectors. For the case z(1) = 0 and
z(2)0 the structural part of the model boils down to

µi = β0 + moneyiβmoney + workiβwork

where β0 include both the levels sex=satisf and sex=0. Instead, for the case z(1) = 0
and z(2) = 1 the structural part of the model becomes

µi = (β0 + βsex) + moneyiβmoney + workiβwork

which shows that β̂sex = 2.296 quantifies the increment from β̂0 = 3.453.

4. Produce the graphical plots for the estimated regression coefficients. Compute the marginal
estimated effects for the predictors clove and sex.

plot(effects::allEffects(mod1))

effects::effect(mod = mod1, term = "clove")
effects::effect(mod = mod1, term = "sex")

5. Check the Normality of residuals as well as the homoscedasticity of the fitted model.
Compute the diffβ̂ statistic for the predictors of the model.
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plot(performance::check_normality(mod1))
plot(performance::check_heteroscedasticity(mod1))

diffbeta_plot(fitted_model = mod1)

6. Fit a new Normal linear model which include sex, clove, and the interaction between
them. Compute the effects of the fitted model in terms of analysis of variance (use the
anova() R function). Provide an interpretation of the results.

mod2 = lm(formula = happy ~ clove + sex + clove:sex, data = datax)
anova(mod2)

The analysis of variance of the fitted model indicates that clove contributes to explain
the observed variance of happy whereas sex as well as the interaction term love:sex do
not. Those variables can be removed from the next analyses.

7. Plot marginal and ineraction effects of the fitted model. Compute the interaction effect
numerically.

plot(effects::effect(mod2, term = "clove"))
plot(effects::effect(mod2, term = "sex"))
plot(effects::effect(mod2, term = "clove:sex"))

effects::effect(mod = mod2, term = "clove:sex")

8. Compute the (1− α) CI for the interaction term of the model (α = 0.005).

X = confint(mod2, level = (1 - 0.005))
print(X[4, ])

1.10
The file dataex_4.csv contains data collected from n = 250 participants and regards an ex-
periment set up to study how the cognitive fatigue changes as a function of a new neurological
drug (group ∈ {group, control}). The outcome variable has been also evaluated in terms of
the particular cognitive task (task ∈ {A, B, C}) participants have been involved in. To control for
eventual spurious relationships, two additional variables have been included in the dataset, i.e.
age and levels of cortisol (cortisol). The outcome variable is represented in terms of scores (the
larger the score, the higher the cognitive fatigue). The goal is to verify whether the experimental
variables affect the outcome by considering the covariates into the analysis.

1. Load the data and check whether all the categorical variables are correctly codified as
factor (use as.factor() otherwise).

source("../labs/utilities.R")
D = read.csv(file = "dataex4.csv")

str(D)
D$task = as.factor(D$task)
D$group = as.factor(D$group)

2. Graphically explore the relationships between the response variable and the predictors.
Make a graphical representation of the interaction between group and task.

exploratory_plots(y = D$cogn_fatigue, D[, -5], plot_type = "lm")
interaction.plot(response = D$cogn_fatigue, x.factor = D$group, trace.factor = D$task,

bty = "n", xlab = "group", ylab = "cogn fatigue", trace.label = "task")
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The graphical analyses suggest that cogn_fatigue (i) decreases in the experimental group
as opposed to the control group, (ii) decreases in the second task and increases in the
third one as opposed to the first task, (iii) mildly increases as a function of age, and (iv)
increases (non-linearly) as a function of cortisol. The empirical density shows a skewed
response variable. Moreover, the interaction plot shows a kind of interaction between the
two experimental variables: cogn_fatigue decreases in the experimental group as opposed
to the control one just for the first and third task.

3. Define and fit a first Normal linear model which includes all the variables in the dataset
additively along with the interaction between group and task. Next, in order to model the
nonlinearity between cortisol and cogn_fatigue, define and fit three additional Normal
linear models where the variable cortisol enters the model as quadratic, cubic, or quartic
term. Note: to exponentiate a variable in the formula parameter, use the syntax I(x∧a)
where x is the variable to be transformed whereas a is the corresponding exponent.

mod1 = lm(data = D, formula = cogn_fatigue ~ group + task + age + cortisol + group:task)

mod2 = lm(data = D, formula = cogn_fatigue ~ group + task + age + I(cortisol^2) +
group:task)

mod3 = lm(data = D, formula = cogn_fatigue ~ group + task + age + I(cortisol^3) +
group:task)

mod4 = lm(data = D, formula = cogn_fatigue ~ group + task + age + I(cortisol^4) +
group:task)

4. Use the posterior predictive check method to identify the best of the four fitted models.
In addition, compute the AIC index for each of the fitted models and compare them with
the results provided by the posterior predictive check.

x11()
par(mfrow = c(2, 2))
posterior_pcheck_Normal(fitted_model = mod1, M = 250, new_window = FALSE)
posterior_pcheck_Normal(fitted_model = mod2, M = 250, new_window = FALSE)
posterior_pcheck_Normal(fitted_model = mod3, M = 250, new_window = FALSE)
posterior_pcheck_Normal(fitted_model = mod4, M = 250, new_window = FALSE)

AIC(mod1, mod2, mod3, mod4)

The posterior predictive check procedure suggests mod3 as the best model. The AIC indices
are in line with this conclusion.

5. Verify whether the previous conclusion could been also confirmed using the residual anal-
ysis. Plot the distributions of the residuals for each fitted model.

x11()
par(mfrow = c(2, 2))
hist(residuals(mod1), prob = TRUE, main = "mod1", bty = "n")
lines(density(residuals(mod1)), lwd = 2, col = "firebrick", lty = 1)
hist(residuals(mod2), prob = TRUE, main = "mod2", bty = "n")
lines(density(residuals(mod2)), lwd = 2, col = "firebrick", lty = 1)
hist(residuals(mod3), prob = TRUE, main = "mod3", bty = "n")
lines(density(residuals(mod3)), lwd = 2, col = "firebrick", lty = 1)
hist(residuals(mod4), prob = TRUE, main = "mod4", bty = "n")
lines(density(residuals(mod4)), lwd = 2, col = "firebrick", lty = 1)

The analysis of residuals confirms the conclusions based on posterior predictive check and
AIC index.

6. Check the homoscedasticity for the chosen model.
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plot(performance::check_heteroscedasticity(mod3))

The graphical analysis reveals a mild heteroscedasticity for the chosen model. Although the
test is significant against homoscedasticity, the graphical analysis shows no really relevant
patterns in the residuals.

7. Globally evaluate the effects of the independent variables on the response variable. Next,
comment the regression coefficients for the predictors group, age, and cortisol.

anova(mod3)
summary(mod3)

The analysis of variance of the model shows that experimental variables (group and task)
as well as the covariates (cortisol and age) contribute to explain the variance of the
response variable. The interaction term is closed to be significant (at α = 0.05). The esti-
mated regression coefficients indicate that, regardless to task, cogn_fatigue significantly
increased in the experimental group as opposed to the control group (β̂group:exp = 2.351,
σ̂βgroup:exp = 2.069, tβgroup:exp = 2.199). Similarly, cogn_fatigue significantly increased as a
function of age (β̂age = 5.085, σ̂βage = 0.111, tβage = 45.522) and cortisol (β̂cortisol = 87.00,
σ̂βcortisol < 1e− 3, tβcortisol > 50.00).

8. Compute and comment the numerical effects of task and group:task on the response
variable.

effects::effect(mod = mod3, term = "task")
effects::effect(mod = mod3, term = "group:task")

Marginally, the mean value of cogn_fatigue increased as task goes from A to C. Similarly,
this pattern still remains when the analysis is computed conditioned on group (interaction).
In particular, for the control group the outcome increases on average across task whereas
for the experimental group the outcome variable is the same on average for both the first
and second tasks.

9. Represent the effects of task and group:task graphically.

plot(effects::effect(mod = mod3, term = "task"))
plot(effects::effect(mod = mod3, term = "group:task"))

interactions::cat_plot(model = mod3, modx = "task", pred = "group", geom = "line")

An alternative way to represent interactions graphically can be performed by using the
function cat_plot from the interactions library.

interactions::cat_plot(model = mod3, modx = "task", pred = "group", geom = "line")

The interaction emerges between task=A, task=B and group.

10. Graphically explore whether the outcome variable varies as a function of cortisol across
group. Note: you can use the function cat_plot from the interactions library via the
following syntax interact_plot(model = mod3,pred = "cortisol",modx = "group").
Similarly, plot the outcome as a function of cortisol across group and task (in this case,
the parameter mod2 of the function interact_plot should be used).

interactions::interact_plot(model = mod3, pred = "cortisol", modx = "group")
interactions::interact_plot(model = mod3, pred = "cortisol", modx = "group", mod2 = "task")

11. Compute the (1− α)% CI for the regression coefficients (α = 0.05). Finally, provide final
comments on the results of the analysis.
Confidence intervals for the regression coefficients can be computed as usual.
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confint(mod3)

However, as we have noticed a mild heteroscedasticity in the model, we might compute
robust confidence intervals by using the function lm_robust() from the estimatr library.
Overall, the robust confidence intervals largely resemble those computed using the standard
method.

mod3_rob = estimatr::lm_robust(data = D, formula = cogn_fatigue ~ group + task +
age + I(cortisol^3) + group:task, se_type = "HC1")

summary(mod3_rob)

Overall, regardless to task, the experimental group shows a higher level of cogn_fatigue
when compared to the control group. Marginally, the new drug seems to produce an oppo-
site effect on the cognitive fatigue. However, by looking at the interaction term, the new
drug (group:exp) significantly decreases cogn_fatigue just for participants involved in the
second (task:B) and third (task:C) tasks. As the interaction reveals, while cogn_fatigue
shows a decreasing patterns for two of the tasks, the outcome increases for participants in
the first task (task:A). Also, the outcome varies as a function of the covariates age - with
older participants showing a higher cognitive fatigue - and cortisol - with higher levels
of cortisol being associated with higher levels of cognitive fatigue. All in all, the results
suggests that the new drug reduces the cognitive fatigue just in the case it can be coupled
with cognitive tasks of type B and C.
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