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Chapter 5

GENERALIZED LINEAR
MODELS (GLMs)

5.1 INTRODUCTION

Models for the analysis of non-normal data using nonlinear models
have a long history. The use of probit regression for a binary response
is a classic example. The word probit was traced by David (1995) as
far back as Bliss (1934). Finney (1952) attributes the actual origin of
probit regression to psychologists in the late 1800s.

In an early example of probit regression, Bliss (1934) describes an
experiment in which nicotine is applied to aphids and the proportion
killed is recorded (how is that for an early antismoking message?). As
an appendix to a paper Bliss wrote a year later (Bliss, 1935), Fisher
(1935) outlines the use of maximum likelihood to obtain estimates of
the probit model.

However it was years before maximum likelihood estimation for pro-
bit models caught on. Finney (1952), in an appendix entitled “Math-
ematical basis of the probit method” gives some of the rational for
maximum likelihood and motivates a computational method that he
spends six pages describing in a different appendix.

More specifically, if we let p; denote the probability of a success for
the ith observation, the probit model is given by

y; ~ indep. Bernoulli(p;)

p = 2(xh), (5.1)
135
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where x} denotes the ith row of a matrix of predictors and ®(-) is
the standard normal c.d.f. Considering the scalar functions applied
elementwise to the vectors, we can rewrite (5.1) as

y ~ indep. Bernoulli(p)

p = 2(XB) (5.2)
or equivalently

®'(p) = XB,

where X is the model matrix. The use of the inverse standard normal
c.d.f., known as the probit, to transform the mean of y to the linear
predictor is attractive on two counts. First, it expands the range of p
from [0,1] to the whole real line, making it more reasonable to assume a
model of the form X 3. Second, in many problems, the sigmoidal form
of p as a function of the covariates is often observed in practice.

Finney (1952) suggested calculating an estimate of A via an itera-
tively weighted least squares algorithm. He recommended using work-
ing probits which he defined (ignoring the shift of five units historically
used to keep all the calculations positive) as

—_— Yi — <I>(x:,6)
=P )

where ¢(-) is the standard normal probability density function (p.d.f.).
The working probits for a current value of 5 were regressed on the

[¢(pz)]

i [1 - z)]
to get the new value of 3. This algorithm was iterated until convergence
(or at least until the computer — a person! - got tired of performing
the calculations).

Nelder and Wedderburn (1972) recognized that the working probits
could be generalized in a straightforward way to unify an entire col-
lection of maximum likelihood problems. This generalized linear model
(GLM) could handle probit or logistic regression, Poisson regression,
log-linear models for contingency tables, variance components estima-
tion from ANOVA mean squares and many other problems in the same
way.

(5.3)

predictors using weights given by ) (see E 5.1) in order
(3
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They replaced ®~1(-) with a general link function, g(-), which trans-
forms (or links) the mean of y; to the linear predictor. With g,(u)
representing dg(u)/0u, they then defined a working variate via

ti = gpi) + gu(pa)ys — mi)

= X8 + gu(1) (i — pi)- (5.4)

Since the second term on the right-hand side of (5.4) has expectation
zero it can be regarded as an error term so that ¢; follows a linear
model, albeit with unequal variances which depend on the unknown
B. This suggests using (5.4) just like (5.3): regress t on X using a
weighted linear regression (more details are given in Section 5.4e) and
iterate until the estimates of 8 stabilize.

More important, it made possible a style of thinking which freed
the data analyst from necessarily looking for a transformation which
simultaneously achieved linearity in the predictors and normality of the
distribution (as in Box and Cox, 1962).

What advantages does this have? First, it unifies what appear to
be very different methodologies, which helps us to understand, use and
(for those of us in the business) teach the techniques. Second, since the
right-hand side of the model equation is a linear model after applying
the link, many of the standard ways of thinking about linear models
carry over to GLMs.

5.2 STRUCTURE OF THE MODEL

Building a generalized linear model involves three decisions:

1. What is the distribution of the data (for fixed values of the pre-
dictors and possibly after a transformation)?

2. What function of the mean will be modeled as linear in the pre-
dictors?

3. What will the predictors be?

a. Distribution of y

Typically the vector y is assumed to consist of independent measure-
ments from a distribution with density from the exponential family or
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similar to the exponential family:
¥ ~ indep. fy; (%)

friwi) = exp{lym —b(1))/7* — c(yi. )}, (5.5)

where, for convenience, we have written the distribution in what is
called canonical form. For example, for the probit model, the data
would be independent Bernoulli so that fy;(yi) would be p¥* (1—p;)!~¥,
where p; is the probability of a success and ; = log[p;/(1 — p;)]. Most
commonly-used distributions can be written in the form (5.5) (see E
5.2).

b. Link function

We typically want to relate the parameters of the distribution to various
predictors. We do so by modeling a transformation of the mean, u;,
which would be some function of v;, as a linear model in the predictors:

Elgi] =

g(u) = xp, (5.6)

where g(-) is a known function, called the link function (since it links
together the mean of y; and the linear form of predictors), x; is the
ith row of the model matrix, and B8 is the parameter vector in the
linear predictor. In the probit example g(u) = ® }(u) and p = 1/(1 +

exp[~7])-

¢. Predictors

In practice, of course, one must make decisions as to which predictors
to include on the right-hand side of (5.6) and in what form to include
them. For example, in the classic paper of Bliss (1934) the suggested
predictor of survival is log nicotine dose as opposed to nicotine itself.

A key point in using GLMs is that many of the considerations in mod-
eling are the same as for LMMs since the right-hand sides of the model
equations for the mean are the same. For example, issues of how to
represent predictors and interactions, whether and how to model non-
linear relationships and (as we will see in Chapter 8) the incorporation
of random factors.
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d. Linear models

This generalized class of models subsumes the linear model of Chapter
4 as a special case. The normal distribution can be written in the form
(5.5) by defining:

Yi = Wi
N _ 1.2
b(yi) = oM
2 = o? (5.7)
c(yi,7) = % log 2o + %y,?/az.

With g(u;) = p; and p; = x}8 we generate the linear model of Section
4.3.

5.3 TRANSFORMING VERSUS LINKING

In its earliest incarnations, probit analysis was little more than a trans-
formation technique. It was realized that the frequent sigmoidal shape
in plots of observed proportions of successes plotted against a predic-
tor z could be made into a straight line by applying a transformation
corresponding to the inverse of the normal c.d.f. However, one of the
main ideas of GLMs is to get away from the idea of transforming the
data. The strategy, then, is to apply a link function to the mean of
the response and fit the resulting model by the method of maximum
likelihood.

5.4 ESTIMATION BY MAXIMUM LIKELIHOOD

a. Likelihood
The log likelihood for (5.5) is given by

n

l= i[ywi —b(y))/7% - Z c(yi, 7)- (5.8)
i=1

=1
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b. Some useful identities

Before we derive the maximum likelihood equations it is useful to es-
tablish some identities. These flow from the results

dlog fy,(¥i)] _
E [ 3’)’1 ] - O’ (59)
and
dlog fr,(w)\ _ _p. [ 9% log fri(w)
a.r( i ) =-E o2 ] , (5.10)

which require regularity conditions (Casella and Berger, 1990, p. 308).
Using (5.5) in (5.9) gives

1

N R
) Bl = s = 5 (5.12)

And using (5.5) in (5.10) we obtain

ar ({yi - a_g(%‘l}/,rz) = -E [_%9281’7(?2] . (5.13)

which, using (5.12) gives

Yi — M 1 9%b(%)
va'r( 72 ) T 2oy
or
0%b(v;)
var(y;) = T2 7 (5.14)
= ro(u)

wherein we define v(u;) as 62b(7;)/8v?. Note that v(u;) is often called
the variance function, since it indicates how the variance of y; depends
on the mean of y;. Two other useful identities are

-1

i (aﬁi)_l (azb('h‘)) 1
— - = — 5.15
Oui  \ 01 o} (ki) (5:13)
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and, using the chain rule and (5.6),

Opi _ O 39(#i)=(3g(p,,-))_1 ox'8
B dg(u:) 0P Ene 38
ag(“‘l) - 1]
( Em ) Xi - (5.16)

As an illustration of these results, consider the linear model in Sec-
tion 5.1d. With subscripts denoting derivatives we have b,(~;) equal
to p;, the mean, and b,,(%) = 1 so that, from (5.14), var(y;) =
72byy (%) = 02, as expected. Also, v;/Ou; = Api/Op; = 1 = v(p;) ™,
verifying (5.15) and, with g, (u:) = 1, Ou; /0B = x| as in (5.16). Note
that the normal distribution has an unusual feature among distribu-
tions given by (5.5): its variance is a constant and not a function of
the mean.

c. Likelihood equations

We are now in a position to derive the maximum likelihood equations
for 8. From (5.8) we have

ol O 0b(v) Ovi
FY] 72 Z [ o0 %J

= Z — W) 3,3 using (5.12)

= 3 Z — i gZ’ g‘; using the chain rule
= —=—"*"_x!  using (5.15) and (5.16)
2 Z gu(uz) )
1 !
= 5 2 (% — m)wigu(ui)x, (5.17)

upon defining w; = [v(u:)gZ ()] .
We can write this in matrix notation as

ol ,
% = ﬁx WA(y — p), (5.18)
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with W = {dwi} and A = {d gu(p)} -
The ML equations are thus given by
X'WAy = X'WAu, (5.19)

where W, A and u involve the unknown . Typically these are non-
linear functions of 8 and so (5.19) cannot be solved analytically.

For example, for the probit model of (5.2), the log likelihood and its
derivative are

=3 (v {log @(x;B) — log[1 — B(x;B)]} + log[1 ~ (x;B)]) (5.20)

and

a $p)  _HEP) N _HB)
B Z[ (@(x'ﬁ) T1T-exp)” ) —a(xp) ]

[y — B(x; ﬂ No(xiB) i
2 S(B)1 - e(B)]

(yi — pa)p(xiB) s
5.21
Z pi(l — ps) & ( )
Identifying b(7;) of (5.5) as log(1+€) so that b, (v;) = (1+e~%)"1 = py;
and by, (%) = pi(1 — p;), it is straightforward (see E 5.4) to show that
(5.21) is of the form of (5.18).
For solving the ML equations or for deriving the large-sample vari-

ance of ,3, it is useful to have the expected value of the second derivative
of the log likelihood:

?l , op ,OWA
—_Bﬂaﬂ’__'r XWA63,+ X 7
so that

—a (Y — ) (5.22)
bodd! 1, ou
1 _ :
= ﬁx’WAA X  using (5.16)

= ;lfx'wx, (5.23)

where,again, W = { i } = { [o(u)aA )]}
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d. Large-sample variances

To derive the large-sample variance of B we first note that

o2 a1,
- [W] = B [5aaX WAl - )
1
= ZX'WAE[y - 4] (5.24)

= 0,

so that estimation of 72 does not affect the large-sample variance of 3.
The usual large-sample arguments (see Section S.4c of Appendix S),
along with (5.23) and (5.24), show that (see E 5.6)

vare(8) = T2 (X'WX) !, (5.25)

where var,, indicates the limiting or asymptotic variance.

e. Solving the ML equations

Solution of the ML equations, (5.19), for 8 is usually performed by
an iterative weighted least squares method. This can be derived as an
example of the use of Fisher scoring (Searle et al., 1992, p. 295). Fisher
scoring is an iterative method for maximizing a likelihood and it takes
the form

gim+l) _ glm) 4 I(g(m))—lg_; (5.26)

0-0"’

where (m) indicates the mth iteration, I(@) is the information matrix
and @ is the entire parameter vector.

Using (5.24), (5.23), and (5.18), the portion of the equation for 8
(see E 5.7) is of the form

Bt = glm) L (X'WX)"IX'WA(y — p), (5.27)

where it is understood that W, A, and p are evaluated at ﬁ(m).
How does this relate to the working variate of (5.4)7 We have

t = XB+A(y—pn) (5.28)

so that, with the use of (5.14)

var(t) = var[A(y — p)] = { rPo(w)gh(w)} = *W,  (5.29)
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so a weighted regression of t on X using weights equal to the inverse
of the variance of t gives

A+ = (X'WX)IX'WXB™ + A(y — p)]

= ™ 4 (X'WX) IX'WA(y — p), (5.30)

which is the same as (5.27).

f. Example: Potato flour dilutions

Finney (1971) gives an example of the growth of spores in a potato flour
suspension. For each of 10 dilutions, five plates are tested for positive
growth. The data are given in Table 5.1. As the flour suspensions
get more concentrated, the probability of growth (i.e., proportion of
positive plates) increases. Figure 5.1 shows that the probability of
response, as a function of the natural logarithm of dilution, follows a
roughly sigmoidal shape, so we might entertain a logistic regression
model. Let y; denote the number of plates out of five that show a
positive response. A possible model is

Table 5.1: Potato Flour Data

Dilution Spore Growth Proportion

(g/100ml No. of Plates No. Positive of Residual Plates
1/128 5 0 0.0
1/64 5 0 0.0
1/32 5 2 0.4
1/16 5 2 0.4
1/8 5 3 0.6
1/4 5 4 0.8
1/2 5 5 1.0
1 5 5 1.0
2 5 5 1.0
4 5 5 1.0

1

Ely] = 5n(z:)=5 (5.31)

yi ~ indep. binomial [5, 7(z;)].
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Figure 5.1: Proportion of positive spore growth plotted
against log dilution for the potato flour data.
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The log likelihood for this model is given by

[ = Z [log( y5, ) + yi(a + Bz;) — 5log(1l + e*F=)

= c+a Z vi+ B Z YiZi — 5 Z log(1 4 e*th%), (5.32)

where ¢ = 5. is a function of the y; but not of @ and 8. The
1

log likelihood is shown as a function of a and S in Figure 5.2. The ML

equations are thus given by

5
Zyi - Z 1 + e—(6+Bz)

5%;
Zyixi = Zm. (5.33)

With > y; = 31 and }_ y;z; = —17.329 it is merely tedious arithmetic
to verify that & = 4.17 and B = 1.62 solve these equations to within
rounding error. Figure 5.3 plots the data and fitted values.

To illustrate the large-sample variance calculation note that
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Figure 5.2: Log likelihood plotted against parameters for the
potato flour data.
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Figure 5.3: Proportion positive versus log dilution for the
potato flour data.
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o) = pai(l—pg)

gulp) = 1/v(us)
so that W = {dpi(l - u,—)} . We thus have

' [ T — ) Tl — )
xwx | Yl - p) Taim(l - ) ]

_ [ 438306 -11.09943
T [ -11.09943 3289365

with inverse

XWX)- = [1.56805 0.52911 }

0.52911 0.20894

This gives
é o 1.56805 0.52911
(B) ~ "w[ (ﬂ) (0.52911 0.20894) }

5.5 TESTS OF HYPOTHESES

a. Likelihood ratio tests

Likelihood ratio tests follow the usual prescription of comparing the
maximized values of the log likelihood both under Hy and not restricted
to Hp. If the difference is large (i.e., the unrestricted model fit is much
better) then Hy is rejected.

When there are multiple parameters we will often be interested in
hypotheses concerning only a subset of the parameters. Accordingly,
let the parameter vector @ be partitioned into two components 8’ =
(8, 6%) and suppose interest focuses on 8, while 85 is left unspecified.
0, is often called a nuisance parameter. Either or both of 8, and 6,
could be vector-valued and, if the entire parameter vector is of interest,
82> could be null.

Suppose our hypothesis is of the form Hy: 8; = 61, where 8¢ is a
specified value of 87, and let éz’o be the MLE of 8; under the restriction
that 8, = 6 0. The likelihood ratio test statistic is given by

-2 lOgA =-2 [1(01,0,92,0) - 1(31,02)] N (5.34)
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- -~ ~1
where §' = (0'1,02) and the large-sample critical region of the test is
to reject Hy in favor of the alternative when

-2 lOg A> X12/,1—a1 (535)

where v is the dimension of 8.

b. Wald tests

An alternative method of testing is to use the large-sample normality
of the ML estimator in order to form a test. From standard results
(Appendix S)

0 ~ ANT8,171(8)], (5.36)

where 1(0) is the Fisher information for 0. Again, if we write @ =
(81, 03), and write conformably

CREEA (5.47

then standard matrix algebra for partitioned matrices (Searle, 1982,
p. 354) and IPultivariate normal calculations show that the large-sample
variance of 6, is given by

. -1
vare(61) = (111 - 1121{21121) . (5.38)

To test Hy: 61 = 0, we form the Wald statistic
W = (81 — 61,0)'[vareo(81)] (81 — 81,0), (5.39)

which, under Hy, has the same large-sample x? distribution as the LRT
with degrees of freedom equal to the dimension of 8;. More explicitly
we would reject the Hy: 8, = 0, if

W>x2 a (5.40)

Both the LRT and the Wald tests are available to test the same hy-
potheses and have the same limiting distribution. What are the differ-
ences? For large samples, and if the deviation from the null hypothesis
is not too extreme, the two test statistics will give similar, though not
identical results (Bishop et al., 1975, Sec. 14.9). However, for small
samples or for extreme deviations, they can differ. Generally, inves-
tigations have shown (Cox and Hinkley, 1974; McCullagh and Nelder,
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1989) that use of the large sample-distribution for the LRT gives a more
accurate approximation for small and moderate-sized samples than for
the Wald test. The LRT is thus to be preferred. The Wald test does,
however, have a computational advantage since it does not require cal-
culation of @2,0.

c. Illustration of tests

We use the potato flour data to illustrate these tests for the null

hypothesis Hy: 8 = 0, i.e., no relationship between spore growth and
log dilution. To perform the likelihood ratio test we must maximize
the likelihood under the null hypothesis, that is, when the probability
of growth is constant. Under Hy, & = 0.4896 (see E 5.5). We thus have

1(61,0,02,0) = 1(0.50,0) = —33.20

while o )
1(81,0,) = 1(a, B) = 1(4.17,1.62) = —14.214.

The LRT statistic is thus —2log A = —2[—33.20 — (—14.21)] = 37.88.
The statistic has 1 degree of freedom, which is the dimension of 8. So
we easily reject Hy at any usual level of significance and the p-value is
P{x? > 37.88} = 0.

The Wald test statistic uses § = 1.62 from below (5.33) and var(8)o, =
0.2089 from the end of Section 5.4. Substituting in (5.39) we then have
W = (1.62)(0.2089)~1(1.62) = 1.622/0.2089 = 12.6. This has a p-value
of P{x? > 12.6} = 0.0004, which again corresponds to rejection of the
null hypothesis at the usual significance levels. This illustrates that
the two test statistics need not be numerically similar for large devia-
tions from the null hypothesis. Of course, in such situations the same
qualitative conclusion would ordinarily be reached.

d. Confidence intervals

Either the LRT or Wald test can be used to construct large-sample
confidence intervals for 8,. For the LRT we include in the confidence
set all values @, such that

=2 [1(81,82,) — 1(81,82)] < XZ-a (5.41)

In (5.41) 32,1 represents the MLE of 8, for each value of 6, checked for
inclusion in the set.
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For the Wald test we include in the confidence set all values of 8,
such that X X X
(01 — 61)'[vare(61)) (01 — 1) < x71 o (5.42)

The computational burden of the likelihood-based confidence interval
is thus larger than that for the Wald-based interval. However, the small
and moderate-sized sample performance of the LRT-based confidence
region has generally been found to be better.

e. Illustration of confidence intervals

The likelihood-based confidence interval solves for the values of 8 such
that )

where g denotes the MLE of a when § is fixed at some value. Nu-
merical calculations give the interval as (0.90, 2.76).

The Wald-based confidence interval for 3 is straightforward since it
is based on

B ~ AN (B,0.2089),

which gives a confidence interval of 1.62 +1.96(0.2089)'/2 = (0.72,
2.52). The LR based interval is approximately the same length as
the Wald interval but is not symmetrically placed about the MLE, an
indication of the non-normality of the sampling distribution.

5.6 MAXIMUM QUASI-LIKELIHOOD

a. Introduction

In some statistical investigations, such as the potato flour example
of Section 5.5, we know the distribution of the data (binomial with
n = 5 in that instance). In others we are less certain. For example, in
analyzing data on costs of hospitalization we know the data are positive
(though it would be nice to be paid for some hospital ordeals!) and they
are invariably skewed right. With a little more experience with such
data we would know that the variance increases with the mean and we
might have a rough idea as to how quickly it increases. However, we are
unlikely to know a priori exactly what distributional form is correct
or even likely to fit well. But not knowing the distribution makes it
impossible to construct a likelihood and thus to use such techniques as
maximum likelihood and likelihood ratio tests.
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It would therefore be useful to have inferential methods which work
as well or almost as well as ML but without having to make specific dis-
tributional assumptions. This is the basic idea behind quasi-likelihood:
to derive a likelihood-like quantity whose construction requires few as-
sumptions.

What are the important characteristics of likelihood which are re-
quired to generate workable estimators? It turns out to be easier to
mimic the properties of the derivative of the log likelihood (also called
the score function) rather than the likelihood itself.

b. Definition

We define an analog of likelihood using (5.9) and (5.10), except that
we differentiate with respect to u; instead of +;. First, from (5.9) we
want

dlog fy, (yi)]
E|l———=] = 0. .
[ B 0 (5.43)
Then we observe that by the chain rule, what we will denote as v* is
o = var (alog fx(yi)) — var (310gfn(yi) @_)
A ovi O

o (C25500)] (2

and using (5.10)

(_E [3210%(%-)}) (%)2

Now, by the nature of fy;(y;) in (5.5), with b(<y;) containing no data

this is ) )

S o7 [\ow
and from the definition of v(u;) below (5.14) this becomes

= ()

vt =
T2 \u

= ”(T‘;") ” :i)z from (5.15). (5.46)
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Thus

310gf¥.~(yi)) _ 1
o (Z52) = gy (547
or, by (5.10) and using Ju; in place of dv;,
dlog fY.'('Ui)) _ _wl|®logfr)| _ 1
var ( A =0 Ou? - r2u(p;)’ (5.48)

Observe that (5.43) and (5.48) are the analogs of (5.9) and (5.10).
We thus seek a quantity in place of dlog fy; (i) /0u: which has prop-
erties (5.43) and (5.48). It is straightforward to verify (see E 5.8) that

Yi — Mi
= ) (549)
satisfies these same conditions, where we assume that var(y;) o v(p;).
The 7 occurring in (5.49) is merely the (unspecified) constant of pro-
portionality relating var(y;) to v(u;), which is not exactly the same as
the 7 that appears in the density (5.5). However, we will use the same
notation since, as we see below, they play the same role.
Since the contribution to the log likelihood from y; is the integral
with respect to u; of dlog fy; (y:)/Oui, we define the log quasi-likelihood
via the contribution y; makes to it:

Moy —1
¥i Tzv(t) ’

Qi = (5.50)
which, by definition, has derivative with respect to u; equal to ¢;. Fi-
nally, to find the mazimum quasi-likelihood (MQL) estimator of 8 we

solve the mazimum quasi-likelthood equations

i}
%6 Y Qi=o. (5.51)
Evaluating the derivative in (5.51) gives
yi—pi O
T20(ui) 6B ’
which, using (5.16), is the same as
D L S S ) (5.52)

T20(p;) 9 (1:)
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or, in matrix notation,
1
;_—2X’WA(y —u)=0, (5.53)

the same as (5.18). Note that by defining maximum quasi-likelihood
estimators as solutions to the maximum quasi-likelihood equations,
(5.51), we avoid a true maximization problem or even the definition of
a quasi-likelihood or log quasi-likelihood itself.

In some ways this is a remarkable result. @; is constructed using only
information about how the variance changes with the mean and nothing
more. And, it is often the case that if we specify a mean-to-variance
relationship, we obtain maximum quasi-likelihood equations which are
exactly the same as those corresponding to a legitimate likelihood.

For example, suppose we are willing to assume the mean and variance
are equal, so that what we build into quasi-likelihood is the fact that
v(p;) = p;. Note that this allows the variance to be merely proportional
to the mean rather than exactly equal to it, so that

By —t

Qi ” 2% dt)
1 ( 1 )#i
= —(yilogt—t
72 ' Yi
1
= —5(yilogui — pi ~ yilogyi + i) (5.54)
and the MQL equations for 8 are
0
28 > (yilogpi — ps) =0 (5.55)

(the other terms dropping out).

Instead of merely assuming that v(u;) = p; suppose we make the
assumption that y; ~ Poisson(y;), which would actually force var(y;) =
pi as well. Then log fy,(y;) = yilogu; — pi — log(y;!) and the ML
equations would be

9 > (yilog i — i) = 0, (5.56)
op

which are the same as the MQL equations, (5.55)! In this case MQL
and ML would give exactly the same estimates and hence MQL would
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be fully efficient. In other cases (see E 5.3) ML does not give equations
of the form (5.19) and, in those cases, MQL may not be fully efficient.
See exercise E 5.10 for some simple calculations and Firth (1987) for
more detail.

MQL has important advantages over ML. To explain, consider again
the specific situation of regression with a Poisson-distributed response.
ML would assume var(y;) = v(y;). However, in practice it is often true
that data appear selected from a distribution in which the variance
is larger than the mean. If the variance is proportional to the mean,
the specification of the model under quasi-likelihood is still correct
because the assumption is only that var(y;) = 72v(y;); that is, var(y;)
is proportional to v(y;), not necessarily equal.

Thus MQL affords us two degrees of robustness. First, we need not
make a distributional assumption and second, we have only to spec-
ify the mean-to-variance relationship up to a proportionality constant
which can be estimated from the data (see below).

Inference using MQL proceeds much as ML for 8. Under mild con-
ditions (McCullagh, 1983) it can be shown that

B~ AN [ﬁ, 72(x'WX)-1] , (5.57)

with 8 being the MQL estimator of 8 and, as we defined before, W =
{ 4 [v(ui)gf.(ui)]”l} :

However, 7 is usually handled differently and estimated via a moment
estimator (McCullagh and Nelder, 1989, p. 328):

. )2

where n is the number of observations and p is the dimension of 8.

5.7 EXERCISES

¢(pi)?
E 5.1 Show that
W B[ - 2
where t; is defined in (5.3).

] is the inverse of an estimate of var(;),

E 5.2 Show that the binomial, Poisson and gamma distributions can be
written in the form (5.5). Hint for the gamma distribution: Write
the density in terms of the mean and coeflicient of variation.
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E 5.3 Suppose y ~ N (e?,ef), i.e., y is normal with equal mean and
variance. Show that the distribution of y is not of the form (5.5).

E 5.4 Show that (5.21) can be written in the form (5.18).

E 5.5 Suppose y; ~ indep. Binomial(n,p) for ¢ = 1,2,...,m, where
p=1/(14+e~%). Show that the MLE of a is log[}" y:/(mn—3 )]

E 5.6 Using (5.24) verify that the large-sample variance of 3 is given
by (5.25).

E 5.7 Derive (5.27) from (5.26).
E 5.8 Show that g; of (5.49) satisfies (5.51), (5.52), and (5.53).

E 5.9 For binary (Bernoulli) and Poisson distributed data, in (5.19)
show that WA =1 and hence it simplifies to

X'y =Xp.

E 5.10 Efficiency of MQL: Suppose that y; ~ A (i;,02) for i = 1,2,.
where logp; = z;8 and v(y;) = p;. Calculate the ratio of the
large-sample variances of B, the MQL estimator of B and ﬂ, the
MLE of 8. For concreteness, assume that n/2 of the observations
have z; = 5 and n/2 are 10. Do the calculations for S equal to
0.1, 1, and 10.



