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Introduction
Back to the origin

Fuzzy sets were introduced in 1965 by Lofti Zadeh
(1921-2017), the father of fuzzy mathematics and
fuzzy logic.

Since the seminal articles in 1965 (Fuzzy sets and
Fuzzy sets and systems), research and applications
based on Zadeh’s work have rapidly increased.
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Introduction
Back to the origin

Applications of fuzzy systems can be found in
consumer electronics, including cameras,
washes and dryers, vehicle transmission,
thermostats, elevators.

The rapid spread of fuzzy set theory leads
Barth Kosko to state that fuzziness is a
pervasive characteristic of our reality [31]. In 1996, the Welsh rock band Super

Furry Animals released their debut
album entitled Fuzzy Logic.

Fuzzy set theory had a big presence in
our collective imagination as a
revolutionary mathematical theory
about fuzziness and ambiguity.
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Introduction
Back to the origin

Applications of fuzzy systems can be
found in:

consumer electronics (e.g.,
cameras, washes, dryers)

vehicle transmission

thermostats, elevators
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Introduction
Nowadays

Thousands of researchers working with fuzzy
mathematics and related fields.

16 international associations linking researchers
together.

12 international peer-reviewd journals dedicated
to fuzzy theory and related disciplines.
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Introduction

Fuzzy set theory is a mathematical approach dealing with problems
related to ambiguousness, subjectiveness, and imprecision.

Some of the disciplines revolving around fuzzy set theory:

fuzzy topology, geometry and algebra

fuzzy logic

fuzzy numerical analysis and fuzzy differential equations

fuzzy statistics and data analysis

control theory and intelligent systems, fuzzy optimization

artificial intelligence, approximate reasoning

soft computing, knowledge based systems
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What is a fuzzy set?
Fuzzy sets generalize classic crisp sets

Consider the following finite reference set:

Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Define the subset A ⊂ Ω containing big numbers:

A = {x ∈ Ω : x ∈ [7, 10]}

In terms of characteristic function, the set A can be defined as

ξA(x) =

{
1 if x ∈ A

0 if x /∈ A

Then,

Ω = {1, 2, 3, 4, 5, 6,
A︷ ︸︸ ︷

7, 8, 9, 10}
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What is a fuzzy set?
Fuzzy sets generalize classic crisp sets

A fuzzy subset Ã ⊂ Ω containing big numbers is:

Ã = {x ∈ Ω : ξA(x) > 0}

where the characteristic function represents graded levels of membership:

ξÃ(x) =



0 if x ≤ 6

0.25 if x = 7

0.50 if x = 8

0.75 if x = 9

1 if x = 10

Then,

Ω = {1, 2, 3, 4, 5, 6,
Ã︷ ︸︸ ︷

7, 8, 9, 10}
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What is a fuzzy set?
Fuzzy sets generalize classic crisp sets
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What is a fuzzy set?
Fuzzy sets generalize classic crisp sets

Consider the simplest case of modeling the person’s height:

Ω = [140, 205] ⊂ R

with the following fuzzy sets:

140 150 160 170 180 190 200

0
.0

0
.4

0
.8

1
.2

short average tall

Fuzzy sets can differ in terms of shape (e.g., triangular, trapezoidal, gaussian).
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What is a fuzzy set?
Fuzzy sets generalize classic crisp sets

The characteristic or membership function ξÃ : Ω → [0, 1] provides information

about the degree to which elements (or intervals) of Ω belong to Ã (i.e., larger
values denote higher degrees of set membership).

The use of ξÃ to represent Ã is usually said vertical representation.

Another way to define Ã is by adopting a horizontal representation:

∀α ∈ [0, 1] : [ξÃ]α = {x ∈ Ω : ξÃ ≥ α}

([ξÃ]α)α>0 is a collection of slices of ξÃ called α-cuts (they are crisp sets).

It follows that:

[ξÃ]α=0 = Ω

[ξÃ]α ⊇ [ξÃ]α′ α < α′
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What is a fuzzy set?
Fuzzy sets generalize classic crisp sets
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What is a fuzzy set?
Fuzzy sets generalize classic crisp sets
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The vertical representation can also be obtained via the horizontal one:
ξÃ is the upper envelope of ([ξÃ]α)α∈L.
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What is a fuzzy set?
Basic operations between fuzzy sets
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Union ξÃ∪B̃(x) = max{ξÃ(x), ξB̃(x)}
Intersection ξÃ∩B̃(x) = min{ξÃ(x), ξB̃(x)}
Complement ξÃ(x) = 1− ξÃ(x)
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What is a fuzzy set?
Basic operations between fuzzy sets
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Note: The operations of intersection and union can also be defined in terms of
T-norm (eg: product, Lukasiewicz) and T-conorm (eg: maximum, bounded
sum).
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What is a fuzzy set?
Fuzzy numbers as special fuzzy sets

Among the various type of fuzzy sets, those which are defined over R are of
particular importance.

A fuzzy set X̃ is a fuzzy number x̃ if it satisfies the following conditions:

X̃ is normal (i.e., its maximum degree of membership is one)

X̃ is convex

ξX̃ is at least piecewise continuous

A fuzzy number x̃ is positive if [ξx̃ ]α=0 ⊆ (0,∞), negative if [ξx̃ ]α=0 ⊆ (−∞, 0).

The set of fuzzy numbers is denoted by F(R).
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What is a fuzzy set?
Fuzzy numbers as special fuzzy sets

Some of the most common fuzzy numbers are the following:

Triangular

tfn(x ; x0, xl , xu) =



0, if x < xl or x > xu

1, if x = x0

(x0−x)
(x0−xl )

if x ∈ [xl , x0)

(x−x0)
(xr−x0)

if x ∈ (x0, xl ]
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What is a fuzzy set?
Fuzzy numbers as special fuzzy sets

Some of the most common fuzzy numbers are the following:

Gaussian

gfn(x ; x0, sl , sr ) =


exp

(
− 1

2s2
l

(x − x0)2)

)
if x ∈ (−∞, x0)

exp

(
− 1

2s2
r

(x − x0)2)

)
if x ∈ [x0,∞)
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What is a fuzzy set?
Fuzzy numbers as special fuzzy sets

Some of the most common fuzzy numbers are the following:

Exponential

efn(x ; x0, tl , tr ) =


exp
(
− 1

tl
(x − x0)

)
if x ∈ (−∞, x0)

exp
(
− 1

tr
(x − x0)

)
if x ∈ [x0,∞)
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What is a fuzzy set?
Fuzzy numbers as special fuzzy sets

Some of the most common fuzzy numbers are the following:

Trapezoidal

tfn(x ; x0, x1xl , xr ) =



0, if x < xl or x > xu

1, if x ∈ [x0, x1]

(x0−x)
(x0−xl )

if x ∈ [xl , x0)

(x−x0)
(xr−x0)

if x ∈ (x0, xl ]
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Calculus with fuzzy numbers
The extension principle

To extend the most elementary operations (E) of addition/subtraction, mul-
tiplication, and division to handle with fuzzy numbers, the Zadeh’s extension
principle (EP) could be applied in this case:

ξc̃(z) = sup
z=E(x,y)

min{ξã(x), ξb̃(y)}

Although it produces reasonable results in most applications, this generalization
does not guarantee that ξc̃ is still a fuzzy number.

Alternatives exist and they are based on generalization of the EP, use of shape/reference
functions, and reduction to interval calculus.
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Calculus with fuzzy numbers
LR fuzzy numbers

Dubois and Prade’s LR fuzzy numbers consist of re-parameterizing ξc̃ in terms
of two monotonic decreasing and left-continuous shape functions:

L : R+ → [0, 1] R : R+ → [0, 1]

with

L/R(υ)


= 0 if υ = 1

= 1 if υ = 0

> 0 if υ < 1

< 1 if υ > 0

and where

ξc̃(x) =

{
L
(
m−x

l

)
if x < m

R
(
x−m
r

)
if x ≥ m

with m, l , r being the mode, left/right spread (l > 0,r > 0).
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Calculus with fuzzy numbers
LR fuzzy numbers

For instance, with the LR parametrization the triangular fuzzy number:

ξc̃(x) =

L
(

x0−x
x0−xl

)
if x < x0

R
(

x−x0
xu−x0

)
if x ≥ x0

with

L(u) = R(u) = max{0, 1− u}
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Calculus with fuzzy numbers
LR fuzzy numbers

Given ã and b̃, in order to compute c̃ = E(ã, b̃) - with E() being one of the
basic operation - it is needed that E() still produces LR-fuzzy number (i.e.,
closure). This requires some restrictions on the type of L/R shape functions
being involved.

To ensures closureness of E(), L/R functions need to be approximated in some
cases (e.g., via secant or tangent techniques). This is especially valid for multi-
plication of fuzzy numbers [27].
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Calculus with fuzzy numbers
LR fuzzy numbers

Addition (triangular case)

c̃ = ã + b̃

(ma + mb, la + lb, ra + rb)LR = (ma, la, ra)LR + (mb, lb, rb)LR
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Antonio Calcagǹı Analysis of Uncertain Data (Part A)

2023 October, 24|26 A sketch of Fuzzy Set Theory 22/72



Calculus with fuzzy numbers
LR fuzzy numbers

Subtraction (triangular case)

c̃ = ã− b̃

(ma −mb, la + rb, ra + lb)LR = (ma, la, ra)LR − (mb, lb, rb)LR
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Calculus with fuzzy numbers
LR fuzzy numbers

Multiplication (triangular positive case)

c̃ = ã · b̃
(mamb,malb + mb la − lalb,marb + mbra + rarb︸ ︷︷ ︸

secant approximation

)LR = (ma, la, ra)LR · (mb, lb, rb)LR
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Calculus with fuzzy numbers
LR fuzzy numbers

Division (triangular positive case)

c̃ = ã · b̃−1

(ma/mb, (xarb + xb la)m−2
b , (xalb + xbra)m−2

b︸ ︷︷ ︸
tangent approximation

)LR = (ma, la, ra)LR/(mb, lb, rb)LR
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Calculus with fuzzy numbers
Interval calculus

To overcome the difficulties of the calculus based on L-R shape functions, one can
turn to the decomposition of a x̃ as a (finite) sequence of α intervals ([ξx̃ ]α)α∈L.
In this case,

c̃ = E(ã, b̃)

Cα = E(Aα,Bα)

[la, ra]α = E([la, ra]α, [ra, rb]α)

and the operation E() is applied element-wise on the α-cuts of the fuzzy numbers
being involved.

Antonio Calcagǹı Analysis of Uncertain Data (Part A)

2023 October, 24|26 A sketch of Fuzzy Set Theory 23/72



Calculus with fuzzy numbers
Interval calculus

Input: ã, b̃ Output: c̃ = E(ã, b̃) using α-cuts of inputs

addition
[la + ra, lb + rb]α = [la, ra]α + [lb, rb]α

subtraction
[la − rb, lb − ra]α = [la, ra]α − [lb, rb]α

multiplication

[min(Sα),max(Sα)]α = [la, ra]α · [lb, rb]α

Sα = {lalb, larb, ralb, rarb}

division

[min(Sα),max(Sα)]α = [la, ra]α/ [lb, rb]α

Sα = {la/lb, la/rb, ra/lb, ra/rb}
0 /∈ [lb, rb]α
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Calculus with fuzzy numbers
Semilinear spaces

In some cases, the addition/subtraction property does not hold here [11]:

Aα + (−1 · Bα) + Bα 6= Aα

Thus, (F(R),+, ·) is a semilinear space.

The lack of subtraction requires the generalization of the classical differentiation
that fit the semilinear environment. The most successful approach implies the
use of Hukuhara differentiation (e.g., see [19]):

Cα = Aα −H Bα such that Aα + Bα = Cα

Note that −H does not always exist (but if it does it is unique).
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Calculus with fuzzy numbers
Semilinear metric spaces

The semilinear space (F(R),+, ·) can be endowed with a metric which can be
useful in statistical applications:

Dλ
τ (Aα,Bα) =

(∫ 1

0

(
(midAα −midBα)2 + τ(sprAα − sprBα)2

)
dλ(α)

) 1
2

where midXα = (lxα − rxα)/2 and sprXα = (rxα − lxα)/2

with λ being the Lebesgue measure.

A particular case of distance:

D2(Aα,Bα) = (1− τ)(midAα −midBα)2 + τ(sprAα − sprBα)2
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Modeling with fuzzy numbers
Fuzzy variables

Fuzzy numbers can be used in the definition of fuzzy variables, i.e. a linguistic
variable whose levels are represented as fuzzy numbers.

For instance, the variable socio-economic status (SES) can be represented in
terms of a fuzzy variable:
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low medium high extreme

Fuzzy variables are of most importance in fuzzy systems.
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Modeling with fuzzy numbers
Fuzzy systems

Fuzzy variables can be combined using fuzzy logic rules to make appropriate
inference [38].

Source: https://tinyurl.com/8s4cnbfz
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Modeling with fuzzy numbers
Fuzzy systems

Fuzzy systems can be used in many practical applications, including:

classification algorithms

neural networks

adaptive learning algorithms

artificial intelligence

numerical solvers

image processing

...
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FST across science

The applications of FST span across many scientific disciplines, including both
theoretical and applied.

With regards to social and behavioral sciences, for instance, FST has successfully
been used in:

quantitative sociology [40]

economics [3]

education [32]

social statistics [34]

In these cases, the role of FST has been to improve standard quantitative meth-
ods.
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FST across science
Fuzziness in social statistics

For instance, Lalla et al. (2005) [32] used a fuzzy set system to evaluate teaching
activity. In particular, they set up a fuzzy system to compute the final composite
teaching score by aggregating several Likert-type indicators.

Similarly, Betti & Verma (2008) [2] used FST to create a multidimensional
indicator of poverty which resulted from the aggregation of empirical indicators
about social and economic situations.

Likewise, Ragin (2000) [37] introduced the fuzzy-Qualitative Comparative Analy-
sis (QCA), a qualitative technique to model causal pathways in a set of variables.
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An elementary example

While probability formalizes the randomness of an aleatory experiment (i.e.,
uncertainty about the occurrence of random events), possibility formalizes the
epistemic imprecision of a random experiment (i.e., uncertainty about the way
random events are defined).

a proposition is uncertain if it involves a stochastic process; [. . .] an exact propo-
sition may be uncertain (“it will be 4°C tomorrow”), and a proposition which is
completely certain may be linguistically inexact (“it is warm now”) [45]
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An elementary example
Tossing a coin

Consider the experiment of tossing a (fair) coin with two possible outcomes:
head or tail. Over a sequence of independent tosses, the observer registered
on a sheet whether the coin is head (h) or tail (t).

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 . . .

t? h? h? . . .

For certain tosses (i.e., i ≥ 5) the observer got distracted and she/he was
uncertain about the outcome (t or h ?).
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An elementary example
Tossing a coin

Then, she/he decided to report the outcomes linguistically:

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 . . .

approx t approx h approx h . . .
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An elementary example
Tossing a coin

The coin tossing experiment can be usually modeled using a Bernoulli random
variable X ∼ Bern(x ;π), with supp(X ) = {0, 1} and

X = 0 : coin is head X = 1 : coin is tail

However, to deal with fuzzy outcomes (was it head or tail?), supp(X ) needs to
be defined in terms of fuzzy sets

supp(X ) = {ξ0̃, ξ1̃}

Abusing notation slightly, the original probability space

({ξ0̃, ξ1̃},PX )

enlarges to cope with the new source of uncertainty (fuzzy probability space).
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An elementary example
Tossing a coin

(

fuzziness︷ ︸︸ ︷
{ξ0̃, ξ1̃}, PX︸︷︷︸

randomness

)

In this case, the observer is uncertain about what

the events 0 (h) and 1 (t) refer to (fuzziness)

the occurrence of such events over a repeated experiment (randomness)
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An elementary example
Tossing a coin

Let

ξ0(x) =

{
1.0 x = 0

0.0 x = 1
ξ1(x) =

{
0.0 x = 0

1.0 x = 1

be the crisp sets for the events X = 0 (h) and X = 1 (t).

ξ0̃(x) =

{
0.9 x = 0

0.2 x = 1
ξ1̃(x) =

{
0.1 x = 0

0.8 x = 1

be the fuzzy sets for the events X
∼
= 0 (approx h) and X

∼
= 1 (approx t).
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An elementary example
Tossing a coin

In the Bernoulli case, PX (x) = πx(1− π)1−x with π ∈ (0, 1) as usual.

The probability of an event is equal to (e.g., see [4]):

PX (X = x) =
∑

x∈{0,1}

ξx̃(x)PX (x)

where the Bernoulli probabilities are weighted by the membership function of the
fuzzy sets.

Antonio Calcagǹı Analysis of Uncertain Data (Part A)

2023 October, 24|26 Randomness and fuzziness 35/72



An elementary example
Tossing a coin

i = 1 i = 2 i = 3 . . .

. . .

With π = 0.5,

the probability of head is

PX (X = 0) = 1 · (0.50 · (1− 0.5)1) + 0 · (0.51 · (1− 0.5)0)

= 0.50

whereas the probability of tail is

PX (X = 1) = 0 · (0.50 · (1− 0.5)1) + 1 · (0.51 · (1− 0.5)0)

= 0.50
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An elementary example
Tossing a coin

. . . i = 5 i = 6 i = 7 . . .

. . . approx t approx h approx h . . .

With π = 0.5,

the probability of “approximately head” is

PX (X
∼
= 0) = 0.9 · (0.50 · (1− 0.5)1) + 0.2 · (0.51 · (1− 0.5)0)

= 0.9 · 0.5 + 0.2 · 0.5 = 0.55

whereas the probability of “approximately tail” is

PX (X
∼
= 1) = 0.1 · (0.50 · (1− 0.5)1) + 0.8 · (0.51 · (1− 0.5)0)

= 0.1 · 0.5 + 0.8 · 0.5 = 0.45

Antonio Calcagǹı Analysis of Uncertain Data (Part A)

2023 October, 24|26 Randomness and fuzziness 35/72



Monotone measures
Possibility, Probability, Beliefs..

Modeling fuzziness as source of uncertainty, requires introducing the notion of
monotone measures [30] which allows for representing fuzziness in terms of
possibility measure.

Broadly speaking, fuzzy membership function ξX̃ can be interpreted as possibility
measure [13], which in turn belongs to the family of imprecise probabilities (in
particular, p-boxes).

For further details, refer to [1].
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Fuzzy probability
A plethora of approaches

Since Zadeh’s definition of probability of a fuzzy event [44], there have been a
plethora of attempts to combine fuzziness and randomness (e.g., see [4, 45, 21,
39, 1, 9, 28, 7]).

The findings provided by the SMIRE group (e.g., M. Gil, I. Couso, P. Teran) are
the most prominent in this debate.

Further details: http://bellman.ciencias.uniovi.es/smire/
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Fuzzy probability
Fuzzy random variables

A fuzzy random variable is a random variable whose possible outcomes are fuzzy
numbers instead of real numbers.

(Didactically speaking) there are two main approaches (although things are more
complicated in reality):

Ontic: The focus is on the non-standard random mechanism that
produces fuzzy outcomes. In this case, the phenomenon being modeled is
fuzzy ontologically (i.e., fuzzy in nature).

Epistemic: Fuzzy numbers represent descriptions of unobserved (latent)
underlying crisp random variables. In this case, the phenomenon being
modeled is fuzzy because of a lack of ability/knowledge in observing the
true but latent outcomes (i.e., fuzzy in knowledge). See slides: 34-35.

→ Related to censored and coarse data [6, 35]
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Fuzzy probability
Fuzzy random variables (Ontic approach)

Let the family of real fuzzy numbers be

F(R) = {ξÃ : R→ [0, 1] | ξÃα
∈ K(R), α ∈ [0, 1]}

with K(R) being the family of all non-empty compact intervals.

Consider two fuzzy numbers Ã, B̃ ∈ F(R), then (see slides 23-26):

the α cut-based operations of summation Ã + B̃ (Minkowski’sum) and
(scalar) product bÃ are applied element-wise on the elements of intervals

the difference Ã−H B̃ is the Hukuhara difference

Dλ
τ (Ã, B̃) is used to measure distances
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Fuzzy probability
Fuzzy random variables (Ontic approach)

A fuzzy random variable is a Borel measurable mapping X̃ from a probability
space (Ω,A,P) to the metric space (F(R),Dλ

τ ).
Note: given the α-cuts representation, X̃ works level-wise.

Given a collection of fuzzy rvs X = (X̃1, . . . , X̃n):

µ̃ = E [X ] =
[
E [midXα]− E [sprXα] ,E [midXα] + E [sprXα]

]
∈ F(R)

σ2
X = Var [X ] = E

[
Dλ
τ (X , µ̃)2

]
∈ R+

If Y is also available:

σX ,Y = Cov [X ,Y ]|Dλ
τ

= Cov [midX ,midY ] + Cov [sprX , sprY ] ∈ R
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Fuzzy probability
Fuzzy random variables (Ontic approach)

Note:

µ̃ preserves all the main properties from the crisp case (e.g., additivity,
equivariance under translation and product by a scalar)

σ2
X preserves all the main properties from the crisp case (e.g., it vanishes

with degenerate distribution, invariance under translation, additivity
under independence)

σX ,Y preserves some properties from the crisp case (e.g., it vanishes for
independent random variables)
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Fuzzy probability
Fuzzy random variables (Ontic approach)

Some limitations of the Ontic approach if compared to standard statistics:

Use of Hukuhara operator to approximate difference between fuzzy
numbers

Lack of a general total ranking between fuzzy numbers

No flexible models for fuzzy random variables

Limit theorems do not always apply for fuzzy random variables (lack of
easy-to-apply statistical inference)
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Some applications of FST
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4 Concluding remarks
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Overview

To generalize what we have said in the previous section, regardless of both
epistemic and ontic approaches to statistics, we can recognize that fuzzy numbers
allow for representing a systematic and non-random uncertainty associated with
data, parameters, or statistical hypotheses.
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Overview

Consider a generic (parametric) statistical model of the form

M = {F (y;θ), θ ∈ Θ ⊂ Rp, y ∈ Yn }

Fuzzy numbers can be introduced in this context to:

represent the parameter space Θ

represent the sample space Yn

In both cases, the statistical model needs to deal with two different sources of
uncertainty at least: the aleatoric uncertainty and the fuzziness (provided by
fuzzy numbers).
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Overview
Fuzziness in Θ

When the parameter space is a subset of fuzzy numbers, i.e. Θ ⊂ F(R)p, we
may have several statistical models where parameters are fuzzy sets:

Fuzzy clustering methods (e.g., [12])

Fuzzy regression (e.g., [8])

Fuzzy time series models (e.g., [8])

...
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Overview
Fuzziness in Yn

When the sample space is a subset of fuzzy numbers, e.g. Yn ⊂ F(R)n or
Yn ⊂ F(N)n, we may have several statistical models where data are fuzzy sets:

Fuzzy linear models (e.g., [5, 8])

Fuzzy time series models (e.g., [8])

Fuzzy component analysis (e.g., [23])

...

In these cases, sufficient statistics for estimating model parameters are based on
fuzzy data as well. The inferential mechanism has to be generalized according
to this new type of data.
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Overview
Fuzzy hypothesis testing

Statistical hypothesis testing can also be performed using a set of fuzzy hy-
potheses over Θ:

Fuzzy Neyman-Pearson lemma for Fuzzy Most Powerful Test (fuzzy-MP)
and Fuzzy Uniformly Most Powerful Test (fuzzy-UMP) [41, 43]

Fuzzy p-values [17, 20]

Minimax fuzzy tests [36]

Fuzzy Bayesian inference [18, 20]
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Overview
Fuzzy hypothesis testing

Example

Let (X1, . . . ,Xi , . . . ,Xn) be a random sample with Xi ∼ N (x ; θ, σ2 = σ2
0) where

θ is the parameter (i.e., the mean) to be tested under the following fuzzy hy-
pothesis system: {

H0 : θ
∼
= 12

H1 : θ
∼
= 10

where
∼
= means approximately (in a fuzzy sense).

The hypotheses over Θ can be expressed using triangular fuzzy numbers.
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Overview
Fuzzy hypothesis testing

Example

{
H0 : θ

∼
= 12

H1 : θ
∼
= 10

Source: [41]
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Overview
Fuzzy hypothesis testing

Example

In this case, error probabilities, power and test functions can be computed by
including fuzzy numbers into the likelihood ratio:

λ(x) =

∫
N(x ; θ, σ2

0)ξH̃0
(θ)∫

N(x ; θ, σ2
0)ξH̃1

(θ)
≤ k

Further details: [41]
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Fuzzy k-means

Fuzzy clustering has been one of the first data analysis technique which has
directly used fuzzy sets into its mechanisms. Since the first attempt by Dunn
[14], a number of improvements and generalizations have been proposed over
the years [16, 29].
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Fuzzy k-means

In general, let X ∈ Rn×p be a (crisp) data matrix and let g = 1, . . . ,G be the
number of (unobserved) clusters. Then, the fuzzy k-means algorithm seeks for
the best fuzzy partition of n units into G groups by solving the following problem:

minimize
Ξ,H

∑
i

∑
g

ξλig ‖xi − hg‖2
2

subject to: (1) ξi ∈ [0, 1]g (2) ξi1G = 1

where Ξn×G is the matrix of fuzzy degrees of membership of the i-th unit to the
g -th cluster whereas HG×p is the matrix of centroids. Note that λ is the tuning
parameter of the algorithm (usually, λ ∈ [1.5, 2]).
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Fuzzy k-means

The basic formulation has been extended so as to:

� generalize beyond the standard spherical cluster solution (i.e., Gustafson and
Kessel ’s solution)

minimize
Ξ,H,V1,...,VG

∑
i

∑
g

ξλig (xi − hg )TV−1
g (xi − hi )

subject to: (1) ξi ∈ [0, 1]g (2) ξi1G = 1 (3) |Vg | = ρg
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Fuzzy k-means

The basic formulation has been extended so as to:

� remove the ambiguous tuning parameter λ (i.e., Li and Mukaidono’s solution)

minimize
Ξ,H

∑
i

∑
g

ξig ‖xi − hg‖2
2 + π

∑
i

∑
g

ξig log ξig

subject to: (1) ξi ∈ [0, 1]g (2) ξi1G = 1

with π > 0 being the temperature of the algorithm (it weights the entropy part
of the objective function).
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Fuzzy k-medoids

The matrix of centroids HG×p can be replaced with the matrix of medoids JG×p:

minimize
Ξ,J

∑
i

∑
g

ξλig ‖xi − jg‖2
2

subject to: (1) ξi ∈ [0, 1]g (2) ξi1G = 1n

Note: given a set S = {s1, . . . , sn} with a distance (or dissimilarity) function d(),
the medoid is the point

x̃ = arg minq∈S d(y , si )
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Fuzzy k-means/medoids
Validity indices

As for the non-fuzzy version of clustering techniques, fuzzy solutions of k-means
and k-medoids can be assessed by means of indices or graphical analyses.

modified Partition index

1− G

G − n
1−

∑
i

∑
g

ξ2
ig

n
(it needs to be maximized over g)

Partition entropy

−
∑
i

∑
g

1

n
ξig log ξig (it needs to be minimized over g)
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Fuzzy k-means/medoids
Validity indices

As for the non-fuzzy version of clustering techniques, fuzzy solutions of k-means
and k-medoids can be assessed by means of indices or graphical analyses.

fuzzy Silhouette index∑
i (ξig1 − ξig2 ) sil(g)∑

i (ξig1 − ξig2 )
(it needs to be maximized over g)

where sil(g) is the standard Silhouette index whereas g1 and g2 are the
first and the second largest elements of the i-th row of Ξ.
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Fuzzy k-means
Example

Source: https://tinyurl.com/32y5t2pj
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Fuzzy regression

A second technique, as old as fuzzy clustering, is that of fuzzy regression. In
the literature, there have been thousands of proposals [8], all of them revolving
around the following generalizations:

(a) y = Xβ̃ + ε (Crisp response, crisp predictors, fuzzy coefficients)

(b) ỹ = Xβ + ε (Fuzzy response, crisp predictors, crisp coefficients)

(c) ỹ = X̃β + ε (Fuzzy response, fuzzy predictors, crisp coefficients)

(d) ỹ = Xβ̃ + ε (Fuzzy response, fuzzy predictors, fuzzy coefficients)

Regression problems have been solved under least squares, non-linear program-
ming, and evolutionary methods.
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Fuzzy regression
Possibilistic regression (Tanaka’s approach)

The simplest formulation for y = Xβ̃ + ε has been provided by Tanaka [42]:

yi = β̃0 +
∑
j

xij β̃j + εi

= (mβ0 , sβ0 ) +
∑
j

xij(m
βj
j , s

βj
j ) + εi

where the regression coefficients have been expressed as symmetric triangular
fuzzy numbers, i.e. β̃ = (m, s)LR .

Note that the linear model predicts outcomes in terms of fuzzy numbers,
i.e. ŷ = ˆ̃y.
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Fuzzy regression
Possibilistic regression (Tanaka’s approach)

The regression model is determined by minimizing the sum of spreads of the
estimated fuzzy outputs:

min
m,s

∑
i

∑
j

|xij |cj

subject to: (1) sj ≥ 0 (2) yi ∈ S(ˆ̃yi )h i = 1, . . . , n

where cons. (2) indicates that the predicted outcomes ˆ̃y have to lie inside the
h-level sets of the estimated regression lines.
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Fuzzy regression
Possibilistic regression (Tanaka’s approach)

Source: [33]
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Fuzzy regression
Possibilistic regression (Tanaka’s approach)

Generalization of the Tanaka’s proposal have been made so as to include asym-
metric fuzzy numbers, fuzzy outcome and predictors. For further details, see:
[33].
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Fuzzy regression
Least squares regression with fuzzy data

Consider a sample of fuzzy triangular numbers ỹ = ((m1, l1, r1), . . . , (mn, ln, rn))LR
and a matrix of crisp predictors Xn×p. Then, given the LR parametric represen-
tation, the following (non-interactive) linear model can be formulated [15]:

m = Xβm + εm

l = Xβl + εl

r = Xβr + εr
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Fuzzy regression
Least squares regression with fuzzy data

Alternatively, a (interactive) linear model could also be developed:

m =

m∗︷︸︸︷
Xβm +εm

l = m∗βl + εl

r = m∗βr + εr
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Fuzzy regression
Least squares regression with fuzzy data

In both cases, the regression problem is solved by formulating the following
(unconstrained) problem:

min
β

‖m−m∗‖2
2 + ‖l− l∗‖2

2 + ‖r − r∗‖2
2

which can be constrained by letting the spread components to be non-negative:

l∗ ≥ 0n and r∗ ≥ 0n
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Fuzzy regression
Least squares regression with fuzzy data

Source: [15]
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Fuzzy regression
Least squares regression with fuzzy data

Generalization of the least squares fuzzy regression have been made so as to
include trapezoidal fuzzy numbers, crisp outcome and fuzzy predictors.
For further details, see: [15].
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Fuzzy regression
Maximum Likelihood regression with fuzzy data

Consider the simplest case of the Normal linear model:

M =
{
N (y;µ, Iσ2),θ = {µ, σ2} ⊂ Rn × R+, y ∈ Rn

}
where the linear predictor (mean) of the model is a linear combination of p
predictors Xn×p:

µ = Xβ

As usual, the interest lies in identifying the true model M0 which has generated
the sample data y (i.e., estimate the unknown parameters {β, σ2}).
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Fuzzy regression
Maximum Likelihood regression with fuzzy data

Now, assuming that y cannot be observed directly due to non-random sources of
uncertainty (post-sampling errors) but the fuzzy sample ỹ is instead available.

Note that the interest still lies in identifying the true (non-fuzzy) model M0.

The parameters {β, σ2} of the Normal linear model with fuzzy observations can
be estimated, for instance, using maximum likelihood adapted to deal with fuzzy
numbers [22].
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Fuzzy regression
Maximum Likelihood regression with fuzzy data

The fuzzy likelihood function is as follows:

L(β, σ2; ỹ) =
n∏

i=1

∫
supp(ỹi )

ξỹi (y)N (y ;β, σ2) dy

where (ξỹ1
, . . . , ξỹi , . . . , ξỹn ) is the sample of fuzzy data (e.g., trapezoidal fuzzy

numbers).
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Fuzzy regression
Maximum Likelihood regression with fuzzy data

L(β, σ2; ỹ) =
n∏

i=1

∫
supp(ỹi )

ξỹi (y)N (y ;β, σ2) dy

fuzziness of data through fuzzy numbers
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Fuzzy regression
Maximum Likelihood regression with fuzzy data

L(β, σ2; ỹ) =
n∏

i=1

∫
supp(ỹi )

ξỹi (y)N (y ;β, σ2) dy

fuzziness of data through fuzzy numbers

randomness of data through the probabilistic model
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Fuzzy regression
Maximum Likelihood regression with fuzzy data

The parameters θ = {β, σ2} can be estimated via Expectation Maximization
(EM) [10]:

Given a candidate θ′, the EM algorithm iterates between:

E-step
Compute y∗ = Eθ′

[
lnL(β, σ2; y)|ỹ

]
M-step
Maximize lnL(β, σ2; y) by replacing y with y∗
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Fuzzy regression
Maximum Likelihood regression with fuzzy data

The parameters θ = {β, σ2} can be estimated via Expectation Maximization
(EM) [10]:

E-step
Compute y∗ = Eθ′

[
lnL(β, σ2; y)|ỹ

]
→ Likelihood of the Normal linear model with no fuzzy observations
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Fuzzy regression
Maximum Likelihood regression with fuzzy data

The parameters θ = {β, σ2} can be estimated via Expectation Maximization
(EM) [10]:

E-step
Compute y∗ = Eθ′

[
lnL(β, σ2; y)|ỹ

]
→ Likelihood of the Normal linear model with no fuzzy observations

→ filtered data: what we would expect to observe if fuzziness was not
present in the data

Antonio Calcagǹı Analysis of Uncertain Data (Part A)

2023 October, 24|26 Fuzzy linear regression 59/72



Fuzzy regression
Maximum Likelihood regression with fuzzy data

The parameters θ = {β, σ2} can be estimated via Expectation Maximization
(EM) [10]:

E-step
Compute y∗ = Eθ′

[
lnL(β, σ2; y)|ỹ

]
=

=

∫
y

ξỹi (y)N (y ;θ′)∫
ξỹi (z)N (y ;θ′) dz

dy
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Fuzzy regression
Maximum Likelihood regression with fuzzy data

The parameters θ = {β, σ2} can be estimated via Expectation Maximization
(EM) [10]:

E-step
Compute y∗ = Eθ′

[
lnL(β, σ2; y)|ỹ

]
=

=

∫
y

ξỹi (y)N (y ;θ′)∫
ξỹi (z)N (y ;θ′) dz

dy

→ Normal density function conditioned on fuzzy numbers!
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Fuzzy regression
Maximum Likelihood regression with fuzzy data

The parameters θ = {β, σ2} can be estimated via Expectation Maximization
(EM) [10]:

E-step
Compute y∗ = Eθ′

[
lnL(β, σ2; y)|ỹ

]
=

=

∫
y

ξỹi (y)N (y ;θ′)∫
ξỹi (z)N (y ;θ′) dz︸ ︷︷ ︸
normalization constant

dy
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Fuzzy regression
Maximum Likelihood regression with fuzzy data

The parameters θ = {β, σ2} can be estimated via Expectation Maximization
(EM) [10]:

E-step
Compute y∗ = Eθ′

[
lnL(β, σ2; y)|ỹ

]
=

=

∫
y

fuzziness︷ ︸︸ ︷
ξỹi (y)

randomness︷ ︸︸ ︷
N (y ;θ′)∫

ξỹi (z)N (y ;θ′) dz︸ ︷︷ ︸
normalization constant

dy
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Fuzzy regression
Maximum Likelihood regression with fuzzy data

The parameters θ = {β, σ2} can be estimated via Expectation Maximization
(EM) [10]:

M-step
Maximize lnL(β, σ2; y) by replacing y with y∗:

β̂ = (XTX)−1XTy∗

σ̂2 =
1

n

(
y∗ − Xβ̂

)T (
y∗ − Xβ̂

)
where y∗ are the observations filtered from fuzziness.
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Fuzzy bootstrap
Overview

Fuzzy random variables constitute a well-founded approach to deal with fuzziness
in statistical data analysis. However, due to the limitations on asymptotic results
useful for doing inference (see slide 39), inference with fuzzy rvs is still an open
issue.

To overcome some of the current limitations, bootstrap techniques have been
widely adopted in fuzzy statistics (e.g., [24]).

Two recent proposals will be briefly considered here:

Bootstrap for epistemic fuzzy data [26]

Bootstrap for ontic fuzzy data [25]
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Fuzzy bootstrap
Epistemic approach

Suppose a sample x̃ = (x̃1, . . . , x̃n) of fuzzy observations (e.g., trapezoidal/triangular)
is available given a collection of (latent/unobserved) crisp random variables
(X1, . . . ,Xn). In this context, x̃i ∈ F(R) and [x̃i ]α denotes the α-cut of x̃i
(bounded interval).

Then, for b = 1, . . . ,B [25]:

s1 : α ∼ U(; 0, 1)

s2 : x̂
(b)
i ∼ U(; min [x̃i ]α,max [x̃i ]α)

Do s1-s2 for i = 1, . . . , n

The bootstrap sample (x̂1, . . . , x̂n)(b) constitutes a random sample from (X1, . . . ,Xn)
which can be used to compute statistics of interest TB(x̂(b)) as usual.
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Fuzzy bootstrap
Epistemic approach

Graphical representation of steps s1 and s2 for trapezoidal fuzzy numbers:

Source: [25]
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Fuzzy bootstrap
Epistemic approach

To reduce the variance of the bootstrap-based estimates, well-known Monte
Carlo techniques (e.g., the antithetic variates method) can be generalized as
well. For further details, see [25].
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Fuzzy bootstrap
Ontic approach

Let X = (X̃1, . . . , X̃n) be a collection of fuzzy rvs with x̃ being a sample of n
trapezoidal fuzzy numbers.

The i-th observation is parameterized as x̃i = (m, s, l , r), with m and s denoting
the center and the width of the core, l and r denoting the usual left and right
spreads.

The following quantities can be used to synthesize x̃i (canonical representation)
[26]:

Val(x̃) = c + (r − l) 1
6

(Location of the fuzzy number)

AmbL(x̃) = 1
2
s + 1

6
l (Left ambiguity of the fuzzy number)

AmbU(x̃) = 1
2
s + 1

6
r (Right ambiguity of the fuzzy number)

EV(x̃) = c + (r − l) 1
4

(Exp. value of the fuzzy number)

w(x̃) = s + (r + l) 1
4

(Width of the fuzzy number)
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Fuzzy bootstrap
Ontic approach

In this case, the bootstrap technique can be applied on the canonical represen-
tation of the fuzzy sample x̃. Note that, although the fuzzy observations do not
need to obey a particular shape, the bootstrap samples are always represented
in terms of trapezoidal fuzzy numbers.

Several algorithms can be defined based on preserving some properties of the
canonical representation, e.g. VA, VAA, VAF.
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Fuzzy bootstrap
Ontic approach

For the sake of simplicity, the VAA algorithm is reproduced here.

Source: [26]
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Concluding remarks

Fuzzy set theory is a broad mathematical theory dealing with phenomena
affected by uncertainty (i.e., ambiguity or vagueness)

Fuzzy numbers and their generalizations (e.g., type-2 fuzzy numbers,
fuzzy quaternions) introduce more flexibility in many mathematical
problems dealing with this type of uncertainty
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Concluding remarks

When coupled with standard probability theory, fuzzy numbers allow for
generalizing statistical models as well as statistical inference to cope with
different sources of uncertainty in the same time

Up to now, a common and unified formal representation subsuming all
the findings from fuzzy statistics, fuzzy probability theory, and fuzzy data
analysis is still missing
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[12] Döring, C., Lesot, M.-J., and Kruse, R.
Data analysis with fuzzy clustering methods.
Computational Statistics & Data Analysis 51, 1 (2006), 192–214.

[13] Dubois, D., and Prade, H.
Fundamentals of fuzzy sets, vol. 7.
Springer Science & Business Media, 2012.

[14] Dunn, J. C.
A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters.

[15] D’Urso, P.
Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data.
Computational Statistics & Data Analysis 42, 1-2 (2003), 47–72.

[16] Ferraro, M. B., and Giordani, P.
A toolbox for fuzzy clustering using the r programming language.
Fuzzy Sets and Systems 279 (2015), 1–16.

[17] Filzmoser, P., and Viertl, R.
Testing hypotheses with fuzzy data: the fuzzy p-value.
Metrika 59, 1 (2004), 21–29.
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